首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the regulation of theNa+/H+exchangers (NHEs) NHE2 and NHE3 by expressing them in human intestinalC2/bbe cells, which spontaneously differentiate and have little basalapical NHE activity. Unidirectional apical membrane22Na+influxes were measured in NHE2-transfected (C2N2) and NHE3-transfected (C2N3) cells under basal and stimulated conditions, and their activities were distinguished as the HOE-642-sensitive and -insensitive components of5-(N,N-dimethyl)amiloride-inhibitableflux. Both C2N2 and C2N3 cells exhibited increased apical membrane NHEactivity under non-acid-loaded conditions compared with nontransfected control cells. NHE2 was inhibited by 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate and thapsigargin, was stimulatedby serum, and was unaffected by cGMP- and protein kinase C-dependent pathways. In contrast, NHE3 was inhibited by all regulatory pathways examined. Under acid-loaded conditions (which increase apical Na+ influx), NHE2 and NHE3exhibited similar patterns of regulation, suggesting that the secondmessenger effects observed were not secondary to effects on cell pH.Thus, in contrast to their expression in nonepithelial cells, NHE2 andNHE3 expressed in an epithelial cell line behave similarly toendogenously expressed intestinal apical membrane NHEs. We concludethat physiological regulation and function of epithelium-specific NHEsare dependent on tissue-specific factors and/or conditionalrequirements.

  相似文献   

2.
3.
Mammalian Na+/H+ exchangers (NHEs) regulate numerous physiological processes and are involved in the pathogenesis of several diseases, including tissue ischemia and reperfusion injuries, cardiac hypertrophy and failure, and cancer progression. Hence, NHEs are being targeted for pharmaceutical-based clinical therapies, but pertinent information regarding the structural elements involved in cation translocation and drug binding remains incomplete. Molecular manipulations of the prototypical NHE1 isoform have implicated several predicted membrane-spanning (M) helices, most notably M4, M9, and M11, as important determinants of cation permeation and drug sensitivity. Here, we have used substituted-cysteine accessibility mutagenesis and thiol-modifying methanethiosulfonate (MTS) reagents to further probe the involvement of evolutionarily conserved sites within M9 (residues 342–363) and the adjacent exofacial re-entrant loop 5 between M9 and M10 (EL5; residues 364–415) of a cysteine-less variant of rat NHE1 on its kinetic and pharmacological properties. MTS treatment significantly reduced the activity of mutants containing substitutions within M9 (H353C, S355C, and G356C) and EL5 (G403C and S405C). In the absence of MTS, mutants S355C, G403C, and S405C showed modest to significant decreases in their apparent affinities for Na+o and/or H+i. In addition, mutations Y370C and E395C within EL5, whereas failing to confer sensitivity to MTS, nevertheless, reduced the affinity for Na+o, but not for H+i. The Y370C mutant also exhibited higher affinity for ethylisopropylamiloride, a competitive antagonist of Na+o transport. Collectively, these results further implicate helix M9 and EL5 of NHE1 as important elements involved in cation transport and inhibitor sensitivity, which may inform rational drug design.  相似文献   

4.
Adequate regulation of endolymphatic pH is essential for maintaining inner ear function. The Na+–H+ exchanger (NHE) is a major determinant of intracellular pH (pHi), and facilitates Na+ and fluid absorption in various epithelia. We determined the functional and molecular expression of NHEs in cultured human endolymphatic sac (ES) epithelial cells and examined the effect of IFN‐γ on NHE function. Serial cultures of human ES epithelial cells were generated from tissue samples. The molecular expression of NHE1, ‐2, and ‐3 isoforms was determined by real‐time RT‐PCR. The functional activity of NHE isoforms was measured microfluorometrically using a pH‐sensitive fluorescent dye, 2′,7′‐bis(carbonylethyl)‐5(6)‐carboxyfluorescein (BCECF), and a NHE‐inhibitor, 3‐methylsulfonyl‐4‐piperidinobenzoyl guanidine methanesulfonate (HOE694). NHE1, ‐2, and ‐3 mRNAs were expressed in human ES epithelial cells. Functional activity of NHE1 and ‐2 was confirmed in the luminal membrane of ES epithelial cells by sequentially suppressing Na+‐dependent pHi recovery from intracellular acidification using different concentrations of HOE694. Treatment with IFN‐γ (50 nM for 24 h) suppressed mRNA expression of NHE1 and ‐2. IFN‐γ also suppressed functional activity of both NHE1 and ‐2 in the luminal membrane of ES epithelial cells. This study shows that NHEs are expressed in cultured human ES epithelial cells and that treatment with IFN‐γ suppresses the expression and functional activity of NHE1 and ‐2. J. Cell. Biochem. 107: 965–972, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Until recently, studies to characterize the intestinal epithelial Na+/H+ exchangers had to be done in nonepithelial, mutated fibroblasts. In these cells, detection of any Na+/H+ exchange activity requires prior acid loading. Furthermore, most of these experiments used intracellular pH changes to measure NHE activity. Because changes in pH i only approximate Na+/H+ exchange activity, and may be confounded by alterations in buffering capacity and/or non-NHE contributions to pH regulation, we have used 22[Na] unidirectional apical to cell uptake to measure activities specific to NHE2 or NHE3. Furthermore, we performed these measurements under basal, nonacid-stimulated conditions to avoid bias from this nonphysiological experimental precondition. Both brush border NHEs, when expressed in the well-differentiated, intestinal villuslike Caco-2 subclone, C2bbe (C2), localize to the C2 apical domain and are regulated by second messengers in the same way they are regulated in vivo. Increases in intracellular calcium and cAMP inhibit both isoforms, while phorbol ester affects only NHE3. NHE2 inhibition by cAMP and Ca++ involves changes to both K Na and V max . In contrast, the same two second messengers inhibit NHE3 by a decrease in V max exclusively. Phorbol ester activation of protein kinase C alters both V max and K Na of NHE3, suggesting a multilevel regulatory mechanism. We conclude that NHE2 and NHE3, in epithelial cells, are basally active and are differentially regulated by signal transduction pathways. Received: 28 January 1999/Revised: 18 May 1999  相似文献   

6.
Mammalian Na+/H+ exchanger (NHE) isoform NHE6 is localized in sorting/recycling endosomes, whereas NHE7 is localized in the trans-Golgi network (TGN) and mid-trans-Golgi stacks. The mechanism targeting each NHE to a specific organelle is largely unknown, although the targeting is thought to be important for pH control in the lumen of various organelles. NHE6 and NHE7 exhibit distinct localization despite conserved amino acid sequences. To specify the intramolecular region involved in the specific localization, we examined the intracellular localization of chimeric NHE6 and NHE7 constructs. NHEs are composed of an N-terminal transmembrane domain (TM) and a C-terminal hydrophilic tail domain (Ct). Exchange of the Ct between the isoforms suggested that the Ct is required for the specific localization. We further split the Ct into three regions, and chimeras with various combinations of these small regions indicated that the most membrane-proximal region among the three contributes to the specific localization. Mutant forms of NHE7 with sequential alanine substitutions in the most membrane-proximal region, between residues 530 and 589, showed that two regions (residues 553–559 and 563–568) are required for NHE7-like localization. However, NHE6 with alanine substitutions in the membrane-proximal region exhibited no apparent change in localization. These results suggest that two membrane proximal regions (residues 533–559 and 563–568) play an important role in targeting NHE7 to the TGN.  相似文献   

7.
Na+/H+ exchangers (NHEs) are integral transmembrane proteins found in all mammalian cells. There is substantial evidence indicating that NHEs regulate inflammatory processes. Because intestinal epithelial cells express a variety of NHEs, we tested the possibility that NHEs are also involved in regulation of the epithelial cell inflammatory response. In addition, since the epithelial inflammatory response is an important contributor to mucosal inflammation in inflammatory bowel disease (IBD), we examined the role of NHEs in the modulation of disease activity in a mouse model of IBD. In human gut epithelial cells, NHE inhibition using a variety of agents, including amiloride, 5-(N-methyl-N-isobutyl)amiloride, 5-(N-ethyl-N-isopropyl)- amiloride, harmaline, clonidine, and cimetidine, suppressed interleukin-8 (IL-8) production. The inhibitory effect of NHE inhibition on IL-8 was associated with a decrease in IL-8 mRNA accumulation. NHE inhibition suppressed both activation of the p42/p44 mitogen-activated protein kinase and nuclear factor-kappaB. Finally, NHE inhibition ameliorated the course of IBD in dextran sulfate-treated mice. Our data demonstrate that inhibition of NHEs may be an approach worthy of pursuing for the treatment of IBD.  相似文献   

8.
Na+/H+ exchangers (NHEs) are ancient membrane‐bound nanomachines that work to regulate intracellular pH, sodium levels and cell volume. NHE activities contribute to the control of the cell cycle, cell proliferation, cell migration and vesicle trafficking. NHE dysfunction has been linked to many diseases, and they are targets of pharmaceutical drugs. Despite their fundamental importance to cell homeostasis and human physiology, structural information for the mammalian NHE was lacking. Here, we report the cryogenic electron microscopy structure of NHE isoform 9 (SLC9A9) from Equus caballus at 3.2 Å resolution, an endosomal isoform highly expressed in the brain and associated with autism spectrum (ASD) and attention deficit hyperactivity (ADHD) disorders. Despite low sequence identity, the NHE9 architecture and ion‐binding site are remarkably similar to distantly related bacterial Na+/H+ antiporters with 13 transmembrane segments. Collectively, we reveal the conserved architecture of the NHE ion‐binding site, their elevator‐like structural transitions, the functional implications of autism disease mutations and the role of phosphoinositide lipids to promote homodimerization that, together, have important physiological ramifications.Subject Categories: Membrane & Intracellular Transport, Structural Biology

Cryo‐EM structures reveal conserved architecture and exchange mechanism of the horse endosomal Na+/H+ exchanger NHE9.  相似文献   

9.
High levels of lactate and H+-ions play an important role in the invasive and metastatic cascade of some tumours. We develop a mathematical model of cellular pH regulation focusing on the activity of the Na+/H+ exchanger (NHE) and the lactate/H+ symporter (MCT) to investigate the spatial correlations of extracellular lactate and H+-ions. We highlight a crucial role for blood vessel perfusion rates in determining the spatial correlation between these two cations. We also predict critical roles for blood lactate, the activity of the MCTs and NHEs on the direction of the cellular pH gradient in the tumour. We also incorporate experimentally determined heterogeneous distributions of the NHE and MCT transporters. We show that this can give rise to a higher intracellular pH and a lower intracellular lactate but does not affect the direction of the reversed cellular pH gradient or redistribution of protons away from the glycolytic source. On the other hand, including intercellular gap junction communication in our model can give rise to a reversed cellular pH gradient and can influence the levels of pH.  相似文献   

10.
Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H+-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na+/H+ exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress.  相似文献   

11.
Arsenic main inorganic compound is arsenic trioxide (ATO) presented in solution mainly as arsenite. ATO increases intracellular pH (pHi), cell proliferation and tumor growth. Sodium-proton exchangers (NHEs) modulate the pHi, with NHE1 playing significant roles. Whether ATO-increased cell proliferation results from altered NHEs expression and activity is unknown. We hypothesize that ATO increases cell proliferation by altering pHi due to increased NHEs-like transport activity. Madin-Darby canine kidney (MDCK) cells grown in 5 mmol/L D-glucose-containing DMEM were exposed to ATO (0.05, 0.5 or 5 µmol/L, 0–48 hours) in the absence or presence of 5-N,N-hexamethylene amiloride (HMA, 5–100 µmol/L, NHEs inhibitor), PD-98059 (30 µmol/L, MAPK1/2 inhibitor), Gö6976 (10 µmol/L, PKCα, βI and μ inhibitor), or Schering 28080 (10 µmol/L, H+/K+ATPase inhibitor) plus concanamycin (0.1 µmol/L, V type ATPases inhibitor). Incorporation of [3H]thymidine was used to estimate cell proliferation, and counting cells with a hemocytometer to determine the cell number. The pHi was measured by fluorometry in 2,7-bicarboxyethyl-5,6-carboxyfluorescein loaded cells. The Na+-dependent HMA-sensitive NHEs-like mediated proton transport kinetics, NHE1 protein abundance in the total, cytoplasm and plasma membrane protein fractions, and phosphorylated and total p42/44 mitogen-activated protein kinases (p42/44mapk) were also determined. Lowest ATO (0.05 µmol/L, ∼0.01 ppm) used in this study increased cell proliferation, pHi, NHEs-like transport and plasma membrane NHE1 protein abundance, effects blocked by HMA, PD-98059 or Gö6976. Cell-buffering capacity did not change by ATO. The results show that a low ATO concentration increases MDCK cells proliferation by NHEs (probably NHE1)-like transport dependent-increased pHi requiring p42/44mapk and PKCα, βI and/or μ activity. This finding could be crucial in diseases where uncontrolled cell growth occurs, such as tumor growth, and in circumstances where ATO, likely arsenite, is available at the drinking-water at these levels.  相似文献   

12.
The Na+/H+ exchanger (NHE) is a protein expressed in many mammalian cell types. It is involved in intracellular pH (pHi) homeostasis by exchanging extracellular Na+ for intracellular H+. To date, nine NHE isoforms (NHE1–NHE9) have been identified. NHE1 is the most predominant isoform expressed in mammalian cardiac muscle. A novel series of substituted (quinolinecarbonyl)guanidine derivatives were designed and synthesized as NHE inhibitors. Most compounds can inhibit NHE1‐mediated platelet swelling in a concentration‐dependent manner, among which compound 7f was the most active and more potent than cariporide. Furthermore, compound 7f has also been demonstrated to exhibit the in vivo cardioprotective effects against SD rat myocardial ischemic‐reperfusion injury superior to those of cariporide.  相似文献   

13.
Osteoblasts synthesize bone in polarized groups of cells sealed by tight junctions. Large amounts of acid are produced as bone mineral is precipitated. We addressed the mechanism by which cells manage this acid load by measuring intracellular pH (pHi) in non‐transformed osteoblasts in response to weak acid or bicarbonate loading. Basal pHi in mineralizing osteoblasts was ~7.3 and decreased by ~1.4 units upon replacing extracellular Na+ with N‐methyl‐D ‐glucamine. Loading with 40 mM acetic or propionic acids, in normal extracellular Na+, caused only mild cytosolic acidification. In contrast, in Na+‐free solutions, weak acids reduced pHi dramatically. After Na+ reintroduction, pHi recovered rapidly, in keeping with Na+/H+ exchanger (NHE) activity. Sodium‐dependent pHi recovery from weak acid loading was inhibited by amiloride with the Ki consistent with NHEs. NHE1 and NHE6 were expressed strongly, and expression was upregulated highly, by mineralization, in human osteoblasts. Antibody labeling of mouse bone showed NHE1 on basolateral surfaces of all osteoblasts. NHE6 occurred on basolateral surfaces of osteoblasts mainly in areas of mineralization. Conversely, elevated HCO alkalinized osteoblasts, and pH recovered in medium containing Cl?, with or without Na+, in keeping with Na+‐independent Cl?/HCO exchange. The exchanger AE2 also occurred on the basolateral surface of osteoblasts, consistent with Cl?/HCO exchange for elimination of metabolic carbonate. Overexpression of NHE6 or knockdown of NHE1 in MG63 human osteosarcoma cells confirmed roles of NHE1 and NHE6 in maintaining pHi. We conclude that in mineralizing osteoblasts, slightly basic basal pHi is maintained, and external acid load is dissipated, by high‐capacity Na+/H+ exchange via NHE1 and NHE6. J. Cell. Physiol. 226: 1702–1712, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Na+/H+ exchange is one of the major pathways of ion transport in cells of pro- and eukaryots and plays an important role in intracellular pH and cell volume regulation, in cell division, proliferation, as well as in epithelial transport processes. Since 1989, investigations on the molecular nature of this transporter have revealed six isoforms (NHE1–NHE6) in mammalian tissues. Most works on studies of properties of the Na/H antiporter and regulation of its activity have been carried out on mammalian tissues. This review summarizes results of studies on the Na+/H+ exchange in tissues of lower vertebrates. Of the greatest interest are investigations on the rainbow trout, whose erythrocytes were found to contain a Na+/H+ exchanger activated by catecholamines. This carrier in trout erythrocytes has been cloned and called beta-NHE ( ;NHE). Another exchanger isoform, atNHE, was isolated from the red blood cells of the giant salamander Amphiuma tridactulum. Isoforms of antiporter isolated from oocytes (XL-NHE) and renal cells of the clawed frog Xenopus laevis (XNHE) have also been described.  相似文献   

15.
Bone homeostasis is tightly regulated by the balanced actions of osteoblasts (OBs) and osteoclasts (OCs). We previously analyzed the gene expression profile of OC differentiation using a cDNA microarray, and identified a novel osteoclastogenic gene candidate, clone OCL-1-E7 [J. Rho, C.R. Altmann, N.D. Socci, L. Merkov, N. Kim, H. So, O. Lee, M. Takami, A.H. Brivanlou, Y. Choi, Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis, DNA Cell Biol. 21 (2002) 541-549]. In this study, we have isolated full-length cDNAs corresponding to this clone from mice and humans to determine the functional roles of this gene in osteoclastogenesis. The full-length cDNA of OCL-1-E7 encodes 12 membrane-spanning domains that are typical of isoforms of the Na+/H+ exchangers (NHEs), indicating that this clone is a novel member of the NHE family (hereafter referred to as NHE10). Here, we show that NHE10 is highly expressed in OCs in response to receptor activator of nuclear factor-κB ligand signaling and is required for OC differentiation and survival.  相似文献   

16.
The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF–preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 μmol/L STa (30 minutes), 25 μmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 μmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 μmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 μmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (J H +) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and J H + (~63%), without altering basal pHi (range 7.144–7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and J H + was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa–decreased dpHi/dt and J H + was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function promoting human diarrhoea.  相似文献   

17.
NHE1/SLC9A1 is a ubiquitous isoform of vertebrate Na+/H+ exchangers (NHEs) functioning in maintaining intracellular concentrations of Na+ and H+ ions. Calcineurin homologous protein-1 (CHP1) binds to the hydrophilic region of NHE1 and regulates NHE1 activity but reportedly does not play a role in translocating NHE1 from the endoplasmic reticulum to the plasma membrane. However, an antiport function of NHE1 requiring CHP1 remains to be clarified. Here we established CHP1-deficient chicken B lymphoma DT40 cells by gene targeting to address CHP1 function. CHP1-deficient cells showed extensive decreases in Na+/H+ activities in intact cells. Although NHE1 mRNA levels were not affected, NHE1 protein levels were significantly reduced not only in the plasma membrane but in whole cells. The expression of a CHP1 transgene in CHP1-deficient cells rescued NHE1 protein expression. Expression of mutant forms of CHP1 defective in Ca2+ binding or myristoylation also partially decreased NHE1 protein levels. Knockdown of CHP1 also caused a moderate decrease in NHE1 protein in HeLa cells. These data indicate that CHP1 primarily plays an essential role in stabilization of NHE1 for reaching of NHE1 to the plasma membrane and its exchange activity. membrane protein; transporter; antiporter; quality control; degradation  相似文献   

18.
Gallbladder Na+ absorption is linked to gallstone formation in prairie dogs. Na+/H+ exchange (NHE) is one of the major Na+ absorptive pathways in gallbladder. In this study, we measured gallbladder Na+/H+ exchange and characterized the NHE isoforms expressed in prairie dogs. Na+/H+ exchange activity was assessed by measuring amiloride-inhibitable transepithelial Na+ flux and apical 22Na+ uptake using dimethylamiloride (DMA). HOE-694 was used to determine NHE2 and NHE3 contributions. Basal J Na ms was higher than J Na sm with J Na net absorption. Mucosal DMA inhibited transepithelial Na+ flux in a dose-dependent fashion, causing J Na ms equal to J Na sm and blocking J Na net absorption at 100 μm. Basal 22Na+ uptake rate was 10.9 ± 1.0 μmol · cm−2· hr−1 which was inhibited by ∼43% by mucosal DMA and ∼30% by mucosal HOE-694 at 100 μm. RT-PCR and Northern blot analysis demonstrated expression of mRNAs encoding NHE1, NHE2 and NHE3 in the gallbladder. Expression of NHE1, NHE2 and NHE3 polypeptides was confirmed using isoform-specific anti-NHE antibodies. These data suggest that Na+/H+ exchange accounts for a substantial fraction of gallbladder apical Na+ entry and most of net Na+ absorption in prairie dogs. The NHE2 and NHE3 isoforms, but not NHE1, are involved in gallbladder apical Na+ uptake and transepithelial Na+ absorption. Received: 9 February 2001/Revised: 11 April 2001  相似文献   

19.
20.
Na+/H+exchanger (NHE) activation has been documented to contribute toendothelial cell injury caused by inflammatory states. However, therole of NHEs in regulation of the endothelial cell inflammatoryresponse has not been investigated. The present study tested thehypothesis that NHEs contribute to endothelial cell inflammationinduced by endotoxin or interleukin (IL)-1. NHE inhibition usingamiloride, 5-(N-ethyl-N-isopropyl)-amiloride, and5-(N-methyl-N-isobutyl)amiloride as well as thenon-amiloride NHE inhibitors cimetidine, clonidine, and harmalinesuppressed endotoxin-induced IL-8 and monocyte chemoattractant protein(MCP)-1 production by human umbilical endothelial vein cells (HUVECs). The suppressive effect of amiloride on endotoxin-induced IL-8 production was associated with a decreased accumulation of IL-8 mRNA.NHE inhibitors suppressed both inhibitory (I)B degradation andnuclear factor (NF)-B DNA binding, suggesting that a decrease inactivation of the IB-NF-B system contributed to the suppression of HUVEC inflammatory response by NHE blockade. NHE inhibition decreased also the IL-1-induced HUVEC inflammatory response, becauseamiloride suppressed IL-1-induced E-selectin expression on HUVECs.These results demonstrate that maximal activation of the HUVECinflammatory response requires a functional NHE.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号