首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disruption of the complex of BECN1 with BCL2 or BCL2L1/BCL-XL is an essential switch that turns on cellular autophagy in response to environmental stress or treatment with BH3 peptidomimetics. Recently, it has been proposed that BCL2 and BCL2L1/BCL-XL may inhibit autophagy indirectly through a mechanism dependent on the proapoptotic BCL2 family members, BAX and BAK1. Here we report that the BH3 mimetic, ABT-737, induces autophagy in parallel with disruption of BCL2-BECN1 binding in 2 different apoptosis-deficient cell types lacking BAX and BAK1, namely in mouse embryonic fibroblasts cells and in human colon cancer HCT116 cells. We conclude that the BH3 mimetic ABT-737 induces autophagy through a BAX and BAK1-independent mechanism that likely involves disruption of BECN1 binding to antiapoptotic BCL2 family members.  相似文献   

2.
Infection of human epithelial cells with adenoviruses induces an apoptosis paradigm that is efficiently suppressed by the expression of viral E1B-19K protein, which is a functional homolog of the cellular antiapoptosis protein BCL-2. The mechanisms of adenovirus (Ad)-induced apoptosis appear to involve the cellular BCL-2 family proapoptotic proteins. Recent genetic studies with fibroblasts derived from mutant mouse embryos indicate that a class of the BCL-2 family proapoptotic proteins (designated BH-123 or multidomain proteins) such as BAX and BAK constitutes an essential component of the core apoptosis machinery in animal cells. We have examined the role of BAX in Ad-induced apoptosis in human epithelial cells using two colon cancer cell lines, HCT116Bax (Bax(+/-)) and HCT116BaxKO (Bax(-/-)) (L. Zhang, J. Yu, B. H. Park, K. W. Kinzler, and B. Vogelstein, Science 290:989-992, 2000). Infection of Bax(+/-) cells with an Ad type 2 mutant (dl250) defective in expression of the E1B-19K protein resulted in enhanced cytopathic effect, large plaques on cell monolayers, fragmentation of cellular DNA, and enhanced cell death. These mutant phenotypes were not efficiently expressed in Bax(-/-) cells, suggesting that BAX is essential for Ad-induced apoptosis. Infection of Bax(+/-) cells with dl250 induced increased levels of an N-terminally processed form of BAX. Cells infected with the 19K mutant also contained enhanced levels of truncated BAX in membrane-inserted form. Our results suggest that at least a part of the mechanism utilized by E1B-19K to suppress apoptosis during Ad infection may involve modulation of the activities of BAX.  相似文献   

3.
ABT-737 is a BH3 mimetic small molecule inhibitor that can effectively inhibit the activity of antiapoptotic Bcl-2 family proteins including Bcl2, Bcl-xL and Bcl-w, and further enhances the effect of apoptosis by activating the proapoptotic proteins (t-Bid, Bad, Bim). In this study, we demonstrate that ABT-737 improved the radiation sensitivity of cervical cancer HeLa cells and thereby provoked cell apoptosis. Our results show that ABT-737 inhibited HeLa cell proliferation and activated JNK and its downstream target c-Jun, which caused the up-regulation of Bim expression. Blockade of JNK/c-Jun signaling pathway resulted in significant down-regulation of ABT-737-induced Bim mRNA and protein expression level. Also, ABT-737 could evoke the Bim promoter activity, and enhance the radiation sensitivity of HeLa cells via JNK/c-Jun and Bim signaling pathway. Our data imply that combination of ABT-737 and conventional radiation therapy might represent a highly effective therapeutic approach for future treatment of cervical cancer.  相似文献   

4.
5.
6.
BAX is a proapoptotic BCL-2 family member that lies dormant in the cytosol until converted into a killer protein in response to cellular stress. Having recently identified the elusive trigger site for direct BAX activation, we now delineate by NMR and biochemical methods the essential allosteric conformational changes that transform ligand-triggered BAX into a fully activated monomer capable of propagating its own activation. Upon BAX engagement by a triggering BH3 helix, the unstructured loop between α helices 1 and 2 is displaced, the carboxy-terminal helix 9 is mobilized for membrane translocation, and the exposed BAX BH3 domain propagates the death signal through an autoactivating interaction with the trigger site of inactive BAX monomers. Our structure-activity analysis of this seminal apoptotic process reveals pharmacologic opportunities to modulate cell death by interceding at key steps of the BAX activation pathway.  相似文献   

7.
The intrinsic pathway of apoptotic cell death is mainly mediated by the BCL-2-associated X (BAX) protein through permeabilization of the mitochondrial outer membrane (MOM) and the concomitant release of cytochrome c into the cytosol. In healthy, non-apoptotic cells, BAX is predominantly localized in the cytosol and exhibits a dynamic shuttle cycle between the cytosol and the mitochondria. Thus, the initial association with mitochondria represents a critical regulatory step enabling BAX to insert into MOMs, promoting the release of cytochrome c and ultimately resulting in apoptosis. However, the molecular mode of how BAX associates with MOMs and whether a cellular regulatory mechanism governs this process is poorly understood. Here we show that in both primary tissues and cultured cells, the association with MOMs and the proapoptotic action of BAX is controlled by its S-palmitoylation at Cys-126. A lack of BAX palmitoylation reduced BAX mitochondrial translocation, BAX oligomerization, caspase activity and apoptosis. Furthermore, ectopic expression of specific palmitoyl transferases in cultured healthy cells increases BAX S-palmitoylation and accelerates apoptosis, whereas malignant tumor cells show reduced BAX S-palmitoylation consistent with their reduced BAX-mediated proapoptotic activity. Our findings suggest that S-palmitoylation of BAX at Cys126 is a key regulatory process of BAX-mediated apoptosis.  相似文献   

8.
Human melanoma cells are very resistant to treatment with chemotherapeutic agents, and melanoma shows poor response to chemotherapeutic therapy. We describe a strong synergistic proapoptotic effect of the Bcl-2 family inhibitor ABT-737 and the standard antimelanoma drugs, namely, dacarbazine and fotemustine, and the experimental agent, imiquimod. Experiments with human melanoma cells, keratinocytes, and embryonic fibroblasts showed that all three agents activated the mitochondrial apoptosis pathway. ABT-737 on its own was ineffective in melanoma cells unless Mcl-1 was experimentally downregulated. However, ABT-737 strongly enhanced the proapoptotic activity of the chemotherapeutic drugs. Whereas cell death induction by all three agents involved the activity of both BH3-only proteins, Bim and Noxa, the combination with ABT-737 overcame the requirement for Bim. However, the synergism between ABT-737 and imiquimod or dacarbazine required endogenous Noxa, as demonstrated by experiments with Noxa-specific RNAi. Surprisingly, although Bim was activated, it was unable to replace Noxa. Studies of mitochondrial cytochrome c release using BH3 peptides confirmed that a main effect of dacarbazine, fotemustine, and imiquimod was to neutralize Mcl-1, thereby sensitizing mitochondria to the inhibition of other Bcl-2 family members through ABT-737. ABT-737 is thus a promising agent for combination therapy for human melanoma. Importantly, the efficacy of this therapy depends on endogenous Noxa, and the ability of chemotherapeutic drugs to activate Noxa may be a valuable predictor of their synergism with Bcl-2-targeting drugs.  相似文献   

9.
BCL-2 family proteins are key regulators of the apoptotic pathway. Antiapoptotic members sequester the BCL-2 homology 3 (BH3) death domains of proapoptotic members such as BAX to maintain cell survival. The antiapoptotic BH3-binding groove has been successfully targeted to reactivate apoptosis in cancer. We recently identified a geographically distinct BH3-binding groove that mediates direct BAX activation, suggesting a new strategy for inducing apoptosis by flipping BAX's 'on switch'. Here we applied computational screening to identify a BAX activator molecule that directly and selectively activates BAX. We demonstrate by NMR and biochemical analyses that the molecule engages the BAX trigger site and promotes the functional oligomerization of BAX. The molecule does not interact with the BH3-binding pocket of antiapoptotic proteins or proapoptotic BAK and induces cell death in a BAX-dependent fashion. To our knowledge, we report the first gain-of-function molecular modulator of a BCL-2 family protein and demonstrate a new paradigm for pharmacologic induction of apoptosis.  相似文献   

10.
Bax is a proapoptotic Bcl-2 family member that has a central role in the initiation of mitochondria-dependent apoptosis. However, the mechanism of Bax activation during apoptosis remains unsettled. It is believed that the activation of Bax is mediated by either dissociation from prosurvival Bcl-2 family members, or direct association with BH3-only members. Several interaction sites on Bax that mediate its interactions with other Bcl-2 family members, as well as its proapoptotic activity, have been identified in previous studies by other groups. To rigorously investigate the functional role of these interaction sites, we knocked in their respective mutants using HCT116 colon cancer cells, in which apoptosis induced by several stimuli is strictly Bax-dependent. Bax-mediated apoptosis was intact upon knock-in (KI) of K21E and D33A, which were shown to block the interaction of Bax with BH3-only activators. Apoptosis was partially reduced by KI of D68R, which impairs the interaction of Bax with prosurvival members, and S184V, a constitutively mitochondria-targeting mutant. In contrast, apoptosis was largely suppressed by KI of L70A/D71A, which blocks homo-oligomerization of Bax and its binding to prosurvival Bcl-2 family proteins. Collectively, our results suggest that the activation of endogenous Bax in HCT116 cells is dependent on its homo-oligomerization sites, but not those previously shown to interact with BH3-only activators or prosurvival proteins only. We therefore postulate that critical interaction sites yet to be identified, or mechanisms other than protein-protein interactions, need to be pursued to delineate the mechanism of Bax activation during apoptosis.  相似文献   

11.
Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.  相似文献   

12.
13.
The PI3K/mammalian Target of Rapamycin (mTOR) pathway is often aberrantly activated in rhabdomyosarcoma (RMS) and represents a promising therapeutic target. Recent evaluation of AZD8055, an ATP-competitive mTOR inhibitor, by the Preclinical Pediatric Testing Program showed in vivo antitumor activity against childhood solid tumors, including RMS. Therefore, in the present study, we searched for AZD8055-based combination therapies. Here, we identify a new synergistic lethality of AZD8055 together with ABT-737, a BH3 mimetic that antagonizes Bcl-2, Bcl-xL, and Bcl-w but not Mcl-1. AZD8055 and ABT-737 cooperate to induce apoptosis in alveolar and embryonal RMS cells in a highly synergistic fashion (combination index < 0.2). Synergistic induction of apoptosis by AZD8055 and ABT-737 is confirmed on the molecular level, as AZD8055 and ABT-737 cooperate to trigger loss of mitochondrial membrane potential, activation of caspases, and caspase-dependent apoptosis that is blocked by the pan-caspase inhibitor Z-VAD-fmk. Similar to AZD8055, the PI3K/mTOR inhibitor NVP-BEZ235, the PI3K inhibitor NVP-BKM120 and Akt inhibitor synergize with ABT-737 to trigger apoptosis, whereas no cooperativity is found for the mTOR complex 1 inhibitor RAD001. Interestingly, molecular studies reveal a correlation between the ability of different PI3K/mTOR inhibitors to potentiate ABT-737-induced apoptosis and to suppress Mcl-1 protein levels. Importantly, knockdown of Mcl-1 increases ABT-737-induced apoptosis similar to AZD8055/ABT-737 cotreatment. This indicates that AZD8055-mediated suppression of Mcl-1 protein plays an important role in the synergistic drug interaction. By identifying a novel synergistic interaction of AZD8055 and ABT-737, our findings have important implications for the development of molecular targeted therapies for RMS.  相似文献   

14.
15.
Apoptosis is a programmed cell death that efficiently removes damaged cells to maintain tissue homeostasis. Defect in apoptotic machinery can lead to tumor development, progression, and resistance to chemotherapy. PUMA (p53 upregulated modulator of apoptosis) and BAX (BCL2-associated X protein) are among the most well-known inducers of apoptosis. It has been reported that expression levels of BAX and PUMA are controlled at the posttranslational level by phosphorylation. However, the posttranslational regulation of these proapoptotic proteins remains largely unexplored. In this study, using biochemical, molecular biology, flow cytometric, and immunohistochemistry techniques, we show that PUMA and BAX are the direct target of the F-box protein FBXL20, which restricts their cellular levels. FBXL20 directs the proteasomal degradation of PUMA and BAX in a protein kinase AKT1-dependent manner to promote cancer cell proliferation and tumor growth. Interestingly, inactivation of AKT1 results in activation of another protein kinase GSK3α/β, which facilitates the proteasomal degradation of FBXL20 by another F-box protein, FBXO31. Thus, a switch between two signaling kinases AKT1 and GSK3α/β modulates the functional activity of these proapoptotic regulators, thereby determining cell survival or death. RNAi-mediated ablation of FBXL20 results in increased levels of PUMA as well as BAX, which further enhances the sensitivity of cancer cells to chemotherapeutic drugs. We showed that high level expression of FBXL20 in cancer cells reduces therapeutic drug-induced apoptosis and promotes chemoresistance. Overall, this study highlights the importance of targeting FBXL20 in cancers in conjunction with chemotherapy and may represent a promising anticancer strategy to overcome chemoresistance.  相似文献   

16.
TRAIL, a putative anticancer cytokine, induces extrinsic cell death by activating the caspase cascade directly (Type I cells) via the death-inducing signaling complex (DISC) or indirectly (Type II cells) by caspase-8 cleavage of Bid and activation of the mitochondrial cell death pathway. Cancer cells are characterized by their dependence on aerobic glycolysis, which, although inefficient in terms of ATP production, facilitates tumor metabolism. Our studies show that TRAIL-induced cell death is significantly affected by the metabolic status of the cell. Inhibiting glycolysis with 2-deoxyglucose potentiates TRAIL-induced cell death, whereas glucose deprivation can paradoxically inhibit apoptosis. These conflicting responses to glycolysis inhibition are modulated by the balance between the Akt and AMPK pathways and their subsequent downstream regulation of mTORC1. This results in marked changes in protein translation, in which the equilibrium between anti- and pro-apoptotic Bcl-2 family member proteins is decided by their individual degradation rates. This regulates the mitochondrial cell death pathway and alters its sensitivity not only to TRAIL, but to ABT-737, a Bcl-2 inhibitor. Taken together, our studies show that the sensitivity of cancer cells to apoptosis can be modulated by targeting their unique metabolism in order to enhance sensitivity to apoptotic agents.  相似文献   

17.
An acidic environment and hypoxia within the tumour are hallmarks of cancer that contribute to cell resistance to therapy. Deregulation of the PI3K/Akt pathway is common in colon cancer. Numerous Akt-targeted therapies are being developed, the activity of Akt-inhibitors is, however, strongly pH-dependent. Combination therapy thus represents an opportunity to increase their efficacy. In this study, the cytotoxicity of the Akt inhibitor perifosine and the Bcl-2/Bcl-xL inhibitor ABT-737 was tested in colon cancer HT-29 and HCT-116 cells cultured in monolayer or in the form of spheroids. The efficacy of single drugs and their combination was analysed in different tumour-specific environments including acidosis and hypoxia using a series of viability assays. Changes in protein content and distribution were determined by immunoblotting and a “peeling analysis” of immunohistochemical signals. While the cytotoxicity of single agents was influenced by the tumour-specific microenvironment, perifosine and ABT-737 in combination synergistically induced apoptosis in cells cultured in both 2D and 3D independently on pH and oxygen level. Thus, the combined therapy of perifosine and ABT-737 could be considered as a potential treatment strategy for colon cancer.  相似文献   

18.
TRAIL, a putative anticancer cytokine, induces extrinsic cell death by activating the caspase cascade directly (Type I cells) via the death-inducing signaling complex (DISC) or indirectly (Type II cells) by caspase-8 cleavage of Bid and activation of the mitochondrial cell death pathway. Cancer cells are characterized by their dependence on aerobic glycolysis, which, although inefficient in terms of ATP production, facilitates tumor metabolism. Our studies show that TRAIL-induced cell death is significantly affected by the metabolic status of the cell. Inhibiting glycolysis with 2-deoxyglucose potentiates TRAIL-induced cell death, whereas glucose deprivation can paradoxically inhibit apoptosis. These conflicting responses to glycolysis inhibition are modulated by the balance between the Akt and AMPK pathways and their subsequent downstream regulation of mTORC1. This results in marked changes in protein translation, in which the equilibrium between anti- and pro-apoptotic Bcl-2 family member proteins is decided by their individual degradation rates. This regulates the mitochondrial cell death pathway and alters its sensitivity not only to TRAIL, but to ABT-737, a Bcl-2 inhibitor. Taken together, our studies show that the sensitivity of cancer cells to apoptosis can be modulated by targeting their unique metabolism in order to enhance sensitivity to apoptotic agents.  相似文献   

19.
Burkitt's lymphoma (BL), driven by translocation and overexpression of the c-MYC gene, is an aggressive, highly proliferative lymphoma, and novel therapeutic strategies are required to overcome drug resistance following conventional treatments. The importance of the prosurvival BCL-2 family member BCL-X(L) in BL cell survival suggests that antagonistic BH3-mimetic compounds may have therapeutic potential. Here, we show that treatment of BL cell lines with ABT-737 induces caspase-3/7 activation and apoptosis with varying potency. Using selective inhibitors, we identify phosphoinositide 3-kinase (PI3K) as a proproliferative/survival pathway in BL cells and investigate the potential of combined pharmacologic inhibition of both the BCL-2 family and PI3K signaling pathway. PI3K/AKT inhibition and ABT-737 treatment induced synergistic caspase activation, augmented BL cell apoptosis, and rendered chemoresistant cells sensitive. Targeting mTORC1/2 with PP242 was also effective, either as a monotherapy or, more generally, in combination with ABT-737. The combined use of a dual specificity PI3K/mTOR inhibitor (PI 103) with ABT-737 proved highly efficacious. PI 103 treatment of BL cells was associated with an increase in BIM/MCL-1 expression ratios and loss of c-MYC expression. Furthermore, blocking c-MYC function using the inhibitor 10058-F4 also induced apoptosis synergistically with ABT-737, suggesting that maintenance of expression of BCL-2 family members and/or c-MYC by the PI3K/AKT/mTOR pathway could contribute to BL cell survival and resistance to ABT-737. The combined use of BH3 mimetics and selective mTORC1/2 inhibitors may therefore be a useful novel therapeutic approach for the treatment of B-cell malignancy, including chemoresistant lymphomas.  相似文献   

20.
Recently, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) has been shown to be a potential candidate for cancer therapy. TRAIL induces apoptosis in various cancer cells but not in normal tissues. Here we show that HCT116 and SW480 cells with a deficient mitochondrial apoptotic pathway were resistant to TRAIL-induced apoptosis, whereas HCT116 and SW480 cells with a functional mitochondrial apoptotic pathway underwent apoptosis upon exposure to TRAIL. Surprisingly, TRAIL induced phenotypic changes in cells with a dysfunctional mitochondrial apoptotic pathway, including membrane blebbing and a transient loss of adhesion properties to the substratum. Accordingly, TRAIL stimulated the ability of these cells to migrate. This behavior was the consequence of a transient TRAIL-induced ROCK1 cleavage. In addition, we report that Bax-deficient HCT116 cells exposed to TRAIL for a prolonged period lost their sensitivity to TRAIL as a result of downregulation of TRAIL receptor expression, and became resistant to combination of TRAIL and other drugs such as MG-132 and bortezomib. These findings may have important consequences for TRAIL anti-cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号