首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bisphosphonates (BPs), especially zoledronic acid (ZOL), are clinically used to treat osteolytic bone lesions. However, serious side-effects may be also induced during the therapeutic process. To improve the BPs drugs, here, we investigated the effects of a series of ZOL derivatives with increasing number of methylene linker between the imidazole ring and the P–C–P backbone named IPrDP, IBDP, IPeDP, and IHDP on cell viability and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation, function and apoptosis induction in mouse bone marrow-derived macrophages (BMMs). Our results suggested that IPeDP and IHDP, which contains 4 and 5 methylene linkers, respectively, exerted lower toxicity on BMMs compared with ZOL, IPrDP, and IBDP, which contains 1, 2, and 3 methylene linkers respectively. At concentrations below cytotoxicity threshold, IPeDP and IHDP possessed strong abilities of antiosteoclast formation, antibone absorption, and inducing osteoclast apoptosis, which were similar to ZOL and more powerful than IPrDP and IBDP. The mechanism behind these effects of IPeDP and IHDP might involve the interference of small GTPases prenylation through suppression of mevalonate pathway. The downregulation of JNK and Akt phosphorylation and subsequent inhibition of the expression of c-Fos and NFATc1 might also be involved. Our results supported the potential usage of IPeDP and IHDP to treat bone-related disorders involving increased osteoclastogenesis. Our attempt to extend the methylene linker between the imidazole ring and the P–C–P backbone of ZOL also reveals some regularities between the structure and properties of the BPs drugs.  相似文献   

2.
3.
Osteoclast (OC) is the only cell involved in bone resorption. Dysfunction of OCs leads to a variety of bone diseases. Ligustilide (LIG) is the main component of the volatile oil isolated and purified from Angelica sinensis. LIG exerts many pharmacological activities, but its effects on osteoclastogenesis and bone resorption are still unclear. Our study showed that LIG inhibited receptor activator of nuclear factor-κB (NF-κB) ligand-induced OC formation and activation in a dose-dependent manner. Additionally, LIG downregulated the messenger RNA (mRNA) expression of OC-specific genes, such as V-ATPase d2, tartrate-resistant acid phosphatase, a dendritic cell-specific transmembrane protein, cathepsin K, and nuclear factor of activated T cells cl. Furthermore, LIG blocked the activation of NF-κB/extracellular signal-regulated kinase/p38/immunoreceptor tyrosine-based activation motif signaling pathways. Crucially, the expression of tumor necrosis factor receptor-associated factor 6 proteins and the expression of receptor activator of NF-κB mRNA were inhibited by LIG. However, LIG did not affect the formation and mineralization of osteoblasts. Collectively, this observation suggests that LIG may serve as a promising agent for the prevention and treatment of diseases caused by abnormal bone resorption.  相似文献   

4.
5.
Osteoporosis is a form of osteolytic disease caused by an imbalance in bone homeostasis, with reductions in osteoblast bone formation, and augmented osteoclast formation and resorption resulting in reduced bone mass. Cajaninstilbene acid (CSA) is a natural compound derived from pigeon pea leaves. CSA possesses beneficial properties as an anti-inflammatory, antibacterial, antihepatitis, and anticancer agent; however, its potential to modulate bone homeostasis and osteoporosis has not been studied. We observed that CSA has the ability to suppress RANKL-mediated osteoclastogenesis, osteoclast marker gene expression, and bone resorption in a dose-dependent manner. Mechanistically, it was revealed that CSA attenuates RANKL-activated NF-κB and nuclear factor of activated T-cell pathways and inhibited phosphorylation of key signaling mediators c-Fos, V-ATPase-d2, and ERK. Moreover, in osteoclasts, CSA blocked RANKL-induced ROS activity as well as calcium oscillations. We further evaluated the therapeutic effect of CSA in a preclinical mouse model and showed that in vivo treatment of ovariectomized C57BL/6 mice with CSA protects the mice from osteoporotic bone loss. Thus, this study demonstrates that osteolytic bone diseases can potentially be treated by CSA.  相似文献   

6.
7.
Bone infection is a common and serious complication in the orthopedics field, which often leads to excessive bone destruction and non‐union. Osteoclast is the only type of cells which have the function of bone resorption. Its over activation is closely related to excessive bone loss. Staphylococcus aureus (S. aureus) is a major pathogen causing bone infection, which can produce a large number of strong pathogenic substances staphylococcal protein A (SPA). However, few studies were reported about the effects of SPA on osteoclastogenesis. In our study, we observed that S. aureus activated osteoclasts and promoted bone loss in bone infection specimens. Then, we investigated the effects of SPA on RANKL‐induced osteoclastogenesis in vitro, the results revealed that SPA promoted osteoclastic differentiation and fusion, and enhanced osteoclastic bone resorption. In addition, we also showed that SPA upregulated the expression of NFATc1 and c‐FOS through the activation of MAPK signaling to promote osteoclastogenesis. Our findings might help us better understand the pathogenic role of S. aureus in bone infection and develop new therapeutic strategies for infectious bone diseases.  相似文献   

8.
9.
Osteolysis is characterized by overactivated osteoclast formation and potent bone resorption. It is enhanced in many osteoclast‐related diseases including osteoporosis and periprosthetic osteolysis. The shortage of effective treatments for these pathological processes emphasizes the importance of screening and identifying potential regimens that could attenuate the formation and function of osteoclasts. Dehydrocostus lactone (DHE) is a natural sesquiterpene lactone containing anti‐inflammatory properties. Here, we showed that DHE suppressed receptor activator of nuclear factor‐κB ligand (RANKL)‐induced osteoclast formation and osteoclast marker gene expression. It also inhibited F‐actin ring formation and bone resorption in a dose‐dependent manner in vitro. Moreover, DHE inhibited the RANKL‐induced phosphorylation of NF‐κB, mitigated bone erosion in vivo in lipopolysaccharide‐induced inflammatory bone loss model and particle‐induced calvarial osteolysis model. Together, these results suggest that DHE reduces osteoclast‐related bone loss via the modulation of NF‐κB activation during osteoclastogenesis indicating that it might be a useful treatment for osteoclast‐related skeletal disorders.  相似文献   

10.
Vitamin D and bone   总被引:5,自引:0,他引:5  
It is now well established that supraphysiological doses of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] stimulate bone resorption. Recent studies have established that osteoblasts/stromal cells express receptor activator of NF-kappaB ligand (RANKL) in response to several bone-resorbing factors including 1alpha,25(OH)(2)D(3) to support osteoclast differentiation from their precursors. Osteoclast precursors which express receptor activator of NF-kappaB (RANK) recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of macrophage-colony stimulating factor (M-CSF). Osteoprotegerin (OPG) acts as a decoy receptor for RANKL. We also found that daily oral administration of 1alpha,25(OH)(2)D(3) for 14 days to normocalcemic thyroparathyroidectomized (TPTX) rats constantly infused with parathyroid hormone (PTH) inhibited the PTH-induced expression of RANKL and cathepsin K mRNA in bone. The inhibitory effect of 1alpha,25(OH)(2)D(3) on the PTH-induced expression of RANKL mRNA occurred only with physiological doses of the vitamin. Supraphysiological doses of 1alpha,25(OH)(2)D(3) increased serum Ca and expression of RANKL in vivo in the presence of PTH. These results suggest that the bone-resorbing activity of vitamin D does not occur at physiological dose levels in vivo. A certain range of physiological doses of 1alpha,25(OH)(2)D(3) rather suppress the PTH-induced bone resorption in vivo, supporting the concept that 1alpha,25(OH)(2)D(3) or its derivatives are useful for the treatment of various metabolic bone diseases such as osteoporosis and secondary hyperparathyroidism.  相似文献   

11.
Enzymatic synthesis of aromatic esters of four different sugar alcohols (xylitol, arabitol, mannitol, and sorbitol) with 3-(4-hydroxyphenyl)propionic acid was performed in organic solvent medium, using immobilized Candida antarctica lipase (Novozyme 435), and molecular sieves for control of the water content. The influence of reaction parameters on the conversion has been investigated, including reaction time, temperature, alcohol/acid molar ratio, and enzyme amount. The highest conversions (94% for xylitol, 98% for arabitol, 80% for mannitol, and 93% for sorbitol) were obtained in pure tert-butanol at 60 °C and 72 h reaction time, 0.3 alcohol/acid molar ratio, and 0.5 g/mol enzyme/substrate ratio. The isolated new sugar alcohols esters were identified by different spectral analyses. MALDI-TOF MS analysis showed the formation of monoesters, diesters, and small quantities of triesters for all investigated sugar alcohols. The catalytic efficiency of the enzyme was higher for the pentitol substrates, decreasing in the following order: arabitol > xylitol > sorbitol > mannitol. These new compounds could have interesting applications in food, pharmaceutical and cosmetic formulations.  相似文献   

12.
13.
14.
15.
16.
17.
Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-kappaB ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.  相似文献   

18.
19.
Ca2+/calmodulin signaling has been recognized recently as a major regulator in osteoclastogenesis. Efforts have ensued to identify the downstream targets of this signaling pathway in the context of regulating osteoclastogenesis. The calcineurin‐NFAT pathway has thus been identified as one such target. In this article, we describe the discovery of another novel downstream target, CaMKIIγ. We also demonstrate that CaMKIIγ is the sole known CaMK expressed in significant amounts in osteoclasts and their precursors. Other known CaMKs such as CaMKIV and CaMKIIα, β, δ, were not detectable, and CaMKI was only expressed at a negligible level. Furthermore, the expression of CaMKIIγ was tightly correlated with the osteoclastogenic process, with a peak level on Day 3 of cell culturing. Osteoclastogenesis is halted by treatment with the CaMKIIγ inhibitor, KN93, independently from apoptosis, with the IC50 for osteoclastogenesis matching that for blocking CaMKIIγ function. Collectively, these data indicate that CaMKIIγ may be a significant regulator of osteoclastogenesis. J. Cell. Biochem. 101: 1038–1045, 2007. © 2006 Wiley‐Liss, Inc.  相似文献   

20.
Bone mass loss (osteoporosis) seen in postmenopausal women is an adverse factor for implant denture. Using an ovariectomized rat model, we studied the mechanism of estrogen-deficiency-caused bone loss and the therapeutic effect of Zoledronic acid. We observed that ovariectomized-caused resorption of bone tissue in the mandible was evident at four weeks and had not fully recovered by 12 weeks post-ovariectomized compared with the sham-operated controls. Further evaluation with a TUNEL assay showed ovariectomized enhanced apoptosis of osteoblasts but inhibited apoptosis of osteoclasts in the mandible. Zoledronic acid given subcutaneously as a single low dose was shown to counteract both of these ovariectomized effects. Immunohistochemical staining showed that ovariectomized induced the protein levels of RANKL and the 65-kD subunit of the NF-κB complex mainly in osteoclasts, as confirmed by staining for TRAP, a marker for osteoclasts, whereas zoledronic acid inhibited these inductions. Western blotting showed that the levels of RANKL, p65, as well as the phosphorylated form of p65, and IκB-α were all higher in the ovariectomized group than in the sham and ovariectomized + zoledronic acid groups at both the 4th- and 12th-week time points in the mandible. These data collectively suggest that ovariectomized causes bone mass loss by enhancing apoptosis of osteoblasts and inhibiting apoptosis of osteoclasts. In osteoclasts, these cellular effects may be achieved by activating RANKL-NF-κB signalling. Moreover, zoledronic acid elicits its therapeutic effects in the mandible by counteracting these cellular and molecular consequences of ovariectomized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号