首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cross talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and RhoA-mediated signal transductions and the effect of this cross talk on biologic features of human prostate and gastric cancer cells were investigated. In the human gastric cancer cell line, SGC-7901, lysophosphatidic acid (LPA) increased RhoA activity in a dose-dependent manner. The cellular permeable cAMP analog, 8-chlorophenylthio-cAMP (CPT-cAMP), inhibited the LPA-induced RhoA activation and caused phosphorylation of RhoA at serine(188). Immunofluorescence microscopy, Western blotting, and green fluorescent protein (GFP)-tagged RhoA location assay in live cells revealed that RhoA was distributed in both the cytoplasm and nucleus of SGC-7901 cells. Treatment with LPA and/or CPT-cAMP did not induce obvious translocation of RhoA in the cells. The LPA treatment caused formation of F-actin in SGC-7901 cells, and CPT-cAMP inhibited the formation. In a modified Boyden chamber assay, LPA stimulated the migration of SGC-7901 cells, and CPT-cAMP dose-dependently inhibited the stimulating effect of LPA. In soft agar assay, LPA stimulated early proliferation of SGC-7901 cells, and CPT-cAMP significantly inhibited the growth of LPA-stimulated cells. In the prostate cancer cell line, PC-3, LPA caused morphologic changes from polygonal to round, and transfection with plasmid DNA encoding constitutively active RhoA(63L) caused a similar change. Treatment with CPT-cAMP inhibited the changes in both cases. However, in PC-3 cells transfected with a plasmid encoding mutant RhoA188A, LPA induced rounding, but CPT-cAMP could not prevent the change. Results of this experiment indicated that cAMP/PKA inhibited RhoA activation, and serine188 phosphorylation on RhoA was necessary for PKA to exert its inhibitory effect on RhoA activation. The cross talk between cAMP/PKA and RhoA-mediated signal transductions had significant affect on biologic features of gastric and prostate cancer cells, such as morphologic and cytoskeletal change, migration, and anchorage-independent growth. The results may be helpful in implementing novel therapeutic strategies for invasive and metastatic prostate and gastric cancers.  相似文献   

2.
Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type.  相似文献   

3.
Dysfunctional regulation of airway smooth muscle tone is a feature of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Airway smooth muscle contraction is directly associated with changes in the phosphorylation of myosin light chain (MLC), which is increased by Rho and decreased by Rac. Although cyclic adenosine monophosphate (cAMP)‐elevating agents are believed to relieve bronchoconstriction mainly via activation of protein kinase A (PKA), here we addressed the role of the novel cAMP‐mediated exchange protein Epac in the regulation of airway smooth muscle tone. Isometric tension measurements showed that specific activation of Epac led to relaxation of guinea pig tracheal preparations pre‐contracted with methacholine, independently of PKA. In airway smooth muscle cells, Epac activation reduced methacholine‐induced MLC phosphorylation. Moreover, when Epac was stimulated, we observed a decreased methacholine‐induced RhoA activation, measured by both stress fibre formation and pull‐down assay whereas the same Epac activation prevented methacholine‐induced Rac1 inhibition measured by pull‐down assay. Epac‐driven inhibition of both methacholine‐induced muscle contraction by Toxin B‐1470, and MLC phosphorylation by the Rac1‐inhibitor NSC23766, were significantly attenuated, confirming the importance of Rac1 in Epac‐mediated relaxation. Importantly, human airway smooth muscle tissue also expresses Epac, and Epac activation both relaxed pre‐contracted human tracheal preparations and decreased MLC phosphorylation. Collectively, we show that activation of Epac relaxes airway smooth muscle by decreasing MLC phosphorylation by skewing the balance of RhoA/Rac1 activation towards Rac1. Therefore, activation of Epac may have therapeutical potential in the treatment of obstructive airway diseases.  相似文献   

4.
The present study characterized the signalling pathways initiated by the bioactive lipid, LPA (lysophosphatidic acid) in smooth muscle. Expression of LPA(3) receptors, but not LPA(1) and LPA(2), receptors was demonstrated by Western blot analysis. LPA stimulated phosphoinositide hydrolysis, PKC (protein kinase C) and Rho kinase (Rho-associated kinase) activities: stimulation of all three enzymes was inhibited by expression of the G(alphaq), but not the G(alphai), minigene. Initial contraction and MLC(20) (20 kDa regulatory light chain of myosin II) phosphorylation induced by LPA were abolished by inhibitors of PLC (phospholipase C)-beta (U73122) or MLCK (myosin light-chain kinase; ML-9), but were not affected by inhibitors of PKC (bisindolylmaleimide) or Rho kinase (Y27632). In contrast, sustained contraction, and phosphorylation of MLC(20) and CPI-17 (PKC-potentiated inhibitor 17 kDa protein) induced by LPA were abolished selectively by bisindolylmaleimide. LPA-induced activation of IKK2 {IkappaB [inhibitor of NF-kappaB (nuclear factor kappaB)] kinase 2} and PKA (protein kinase A; cAMP-dependent protein kinase), and degradation of IkappaBalpha were blocked by the RhoA inhibitor (C3 exoenzyme) and in cells expressing dominant-negative mutants of IKK2(K44A) or RhoA(N19RhoA). Phosphorylation by Rho kinase of MYPT1 (myosin phosphatase targeting subunit 1) at Thr(696) was masked by phosphorylation of MYPT1 at Ser(695) by PKA derived from IkappaB degradation via RhoA, but unmasked in the presence of PKI (PKA inhibitor) or C3 exoenzyme and in cells expressing IKK2(K44A). We conclude that LPA induces initial contraction which involves activation of PLC-beta and MLCK and phosphorylation of MLC(20), and sustained contraction which involves activation of PKC and phosphorylation of CPI-17 and MLC(20). Although Rho kinase was activated, phosphorylation of MYPT1 at Thr(696) by Rho kinase was masked by phosphorylation of MYPT1 at Ser(695) via cAMP-independent PKA derived from the NF-kappaB pathway.  相似文献   

5.
Prostaglandin E(2) (PGE(2)) and prostacyclin are lipid mediators produced by cyclooxygenase and implicated in the regulation of vascular function, wound repair, inflammatory processes, and acute lung injury. Although protective effects of these prostaglandins (PGs) are associated with stimulation of intracellular cAMP production, the crosstalk between cAMP-activated signal pathways in the regulation of endothelial cell (EC) permeability is not well understood. We studied involvement of cAMP-dependent kinase (PKA), cAMP-Epac-Rap1 pathway, and small GTPase Rac in the PGs-induced EC barrier protective effects and cytoskeletal remodeling. PGE(2) and PGI(2) synthetic analog beraprost increased transendothelial electrical resistance and decreased dextran permeability, enhanced peripheral F-actin rim and increased intercellular adherens junction areas reflecting EC barrier-protective response. Furthermore, beraprost dramatically attenuated thrombin-induced Rho activation, MLC phosphorylation and EC barrier dysfunction. In vivo, beraprost attenuated lung barrier dysfunction induced by high tidal volume mechanical ventilation. Both PGs caused cAMP-mediated activation of PKA-, Epac/Rap1- and Tiam1/Vav2-dependent pathways of Rac1 activation and EC barrier regulation. Knockdown of Epac, Rap1, Rac-specific exchange factors Tiam1 and Vav2 using siRNA approach, or inhibition of PKA activity decreased Rac1 activation and PG-induced EC barrier enhancement. Thus, our results show that barrier-protective effects of PGE(2) and prostacyclin on pulmonary EC are mediated by PKA and Epac/Rap pathways, which converge on Rac activation and lead to enhancement of peripheral actin cytoskeleton and adherens junctions. These mechanisms may mediate protective effects of PGs against agonist-induced lung vascular barrier dysfunction in vitro and against mechanical stress-induced lung injury in vivo.  相似文献   

6.
The role of RhoA in myosin light-chain (MLC)(20) dephosphorylation and smooth muscle relaxation by PKA and PKG was examined in freshly dispersed and cultured smooth muscle cells expressing wild-type RhoA, constitutively active Rho(V14), and phosphorylation site-deficient Rho(A188). Activators of PKA (5,6-dichloro-1-beta-ribofuranosyl benzimidazole 3',5'-cyclic monophosphothionate, Sp-isomer; cBIMPS) or PKG [8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP), sodium nitroprusside (SNP)] or both PKA and PKG (VIP) induced phosphorylation of constitutively active Rho(V14) and agonist (ACh)- or GTPgammaS-stimulated wild-type RhoA but not Rho(A188). Phosphorylation was accompanied by translocation of membrane-bound wild-type RhoA and Rho(V14) to the cytosol and complete inhibition of ACh-stimulated Rho kinase and phospholipase D activities, RhoA/Rho kinase association, MLC(20) phosphorylation, and sustained muscle contraction. Each of these events was blocked depending on the agent used, by the PKG inhibitor KT5823 or the PKA inhibitor myristoylated PKI. Inhibitors were used at a concentration (1 microM) previously shown by direct measurement of kinase activity to selectively inhibit the corresponding kinase. In muscle cells overexpressing the active phosphorylation site-deficient mutant Rho(A188), MLC(20) phosphorylation was partly inhibited by SNP, VIP, cBIMPS, and 8-pCPT-cGMP, suggesting the existence of an independent inhibitory mechanism downstream of RhoA. Results demonstrate that dephosphorylation of MLC(20) and smooth muscle relaxation are preferentially mediated by PKG- and PKA-dependent phosphorylation and inactivation of RhoA.  相似文献   

7.
The Na(+)/H(+) exchanger NHE3 isoform mediates the entry of Na(+) into epithelial cells of the kidney and gastrointestinal tract. Hormones and pharmacological agents that activate cAMP-dependent protein kinase A (PKA) are potent inhibitors of native and ectopically expressed NHE3 in epithelial and Chinese hamster ovary AP-1 cells, respectively. Previous studies have shown that acute inhibition is coupled to direct phosphorylation of the exchanger, but this only partly accounts for the observed effects. In this report, we show that inhibition of NHE3 activity by forskolin, an activator of adenylate cyclase, occurs without changes in surface expression of the exchanger but is associated with altered cytoskeletal structure. This effect resembles that obtained with cytochalasin D or latrunculin B, actin disrupting agents that also inhibit NHE3. Such similarities prompted us to further investigate the relationship between PKA-induced inhibition of the exchanger and changes in the actin cytoskeleton. Inhibition of NHE3 by cytochalasin D does not require PKA, because the inhibitory effect is preserved in a mutant NHE3 that is not phosphorylated by PKA and in cells pretreated with the PKA inhibitor H89. In contrast, involvement of actin in the effect of cAMP on the exchanger is supported by the following observations: (i) jasplakinolide, an F-actin stabilizer, prevents the inhibition caused by forskolin, and (ii) constitutively active forms of RhoA and Rho kinase interfere with actin disruption by forskolin and also decrease inhibition of the transporter. These results suggest that reorganization of the cytoskeleton by PKA is involved in mediating inhibition of NHE3.  相似文献   

8.
Previous work has established that the integrin signal transduction pathway plays an important role in the regulation of epithelial tubule formation. Furthermore, it has been demonstrated that Rho-kinase, an effector of the Rho signaling pathway, is an important downstream modulator of collagen-mediated renal and mammary epithelial tubule morphogenesis. In the present study, MDCK cells that expressed mutant dominant-negative, constitutively active Rho family GTPases were used to provide further insight into Rho-GTPase signaling and the regulation of epithelial tubule formation. Using collagen gel overlays on MDCK cells as a model system, we observed phosphorylated myosin light chain (pMLC) at the leading edge of migrating lamellipodia. This epithelial remodeling led to the formation of multicellular branching epithelial tubular structures with extensive tight junctions. However, in cells expressing dominant-negative RhoN19, MLC phosphorylation, epithelial remodeling, and tubule formation were inhibited. Instead, only small apical lumens with a solitary tight junctional ring were observed, providing further evidence that Rho signaling through Rho-kinase is important in the regulation of epithelial tubule formation. Because the present model for the Rho signaling pathway proposes that Rac plays a prominent but reciprocal role in cell regulation, experiments were conducted using cells that expressed constitutively active RacV12. When incubated with collagen gels, RacV12-expressing cells formed small apical lumens with simple tight junctions, suggesting that Rac1 signaling also has a prominent role in the regulation of epithelial morphogenesis. Complementary collagen gel overlay experiments with wild-type MDCK cells demonstrated that endogenous Rac1 activation levels decreased over a time course consistent with lamellipodia and tubule formation. Under these conditions, Rac1 was initially localized to the basolateral membrane. However, after epithelial remodeling, activated Rac1 was observed primarily in lamellipodia. These studies support a model in which Rac1 and RhoA are important modulators of epithelial tubule formation. Rac signaling; Rho signaling; tight junction; adherens junction  相似文献   

9.
To examine signaling mechanisms relevant to cAMP/protein kinase A (PKA)-dependent endothelial cell barrier regulation, we investigated the impact of the cAMP/PKA inhibitors Rp diastereomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS) and PKA inhibitor (PKI) on bovine pulmonary artery and bovine lung microvascular endothelial cell cytoskeleton reorganization. Rp-cAMPS as well as PKI significantly increased the formation of actin stress fibers and intercellular gaps but did not alter myosin light chain (MLC) phosphorylation, suggesting that the Rp-cAMPS-induced contractile phenotype evolves in an MLC-independent fashion. We next examined the role of extracellular signal-regulated kinases (ERKs) in Rp-cAMPS- and PKI-induced actin rearrangement. The activities of both ERK1/2 and its upstream activator Raf-1 were transiently enhanced by Rp-cAMPS and linked to the phosphorylation of the well-known ERK cytoskeletal target caldesmon. Inhibition of the Raf-1 target ERK kinase (MEK) either attenuated or abolished Rp-cAMPS- and PKI-induced ERK activation, caldesmon phosphorylation, and stress fiber formation. In summary, our data elucidate the involvement of the p42/44 ERK pathway in cytoskeletal rearrangement evoked by reductions in PKA activity and suggest the involvement of significant cross talk between cAMP- and ERK-dependent signaling pathways in endothelial cell cytoskeletal organization and barrier regulation.  相似文献   

10.
Glomerular mesangial cells contain actin and myosin, and in analogy to vascular smooth muscle cells, they can contract and relax to regulate the glomerular filtration rate. A key molecule that determines hemodynamic properties is nitric oxide, which is produced by nitric oxide synthase isoenzymes located in individual cells of the kidney. The contractility of mesangial cells is based on the interaction of actin microfilament bundles (F-actin) with myosin. We had the notion that nitric oxide influences the shape change of mesangial cells, so we analyzed the signal transduction involved. Chemically unrelated nitric oxide donors induced F-actin dissolution, which was mediated by cGMP but was unrelated to protein kinase G activation. Actin disassembly was achieved with inhibitors of phosphodiesterase-3 and -4 or forskolin-evoked cAMP generation. We assumed that signal transmission involves activation of protein kinase A, and we went on to attenuate F-actin disassembly by protein kinase A inhibition. In conclusion, we found evidence that nitric oxide triggered F-actin dissolution via cGMP generation, inhibition of cAMP-hydrolyzing phosphodiesterase-3, and subsequent protein kinase A activation.  相似文献   

11.
Glomerular mesangial cells contain actin and myosin, and in analogy to vascular smooth muscle cells, they can contract and relax to regulate the glomerular filtration rate. A key molecule that determines hemodynamic properties is nitric oxide, which is produced by nitric oxide synthase isoenzymes located in individual cells of the kidney. The contractility of mesangial cells is based on the interaction of actin microfilament bundles (F-actin) with myosin. We had the notion that nitric oxide influences the shape change of mesangial cells, so we analyzed the signal transduction involved. Chemically unrelated nitric oxide donors induced F-actin dissolution, which was mediated by cGMP but was unrelated to protein kinase G activation. Actin disassembly was achieved with inhibitors of phosphodiesterase-3 and -4 or forskolin-evoked cAMP generation. We assumed that signal transmission involves activation of protein kinase A, and we went on to attenuate F-actin disassembly by protein kinase A inhibition. In conclusion, we found evidence that nitric oxide triggered F-actin dissolution via cGMP generation, inhibition of cAMP-hydrolyzing phosphodiesterase-3, and subsequent protein kinase A activation.  相似文献   

12.
Much evidence indicates that cAMP-dependent protein kinase (PKA) prevents increased endothelial permeability induced by inflammatory mediators. We investigated the hypothesis that PKA inhibits Rho GTPases, which are regulator proteins believed to mediate endothelial barrier dysfunction. Stimulation of human microvascular endothelial cells (HMEC) with thrombin (10 nM) increased activated RhoA (RhoA-GTP) within 1 min, which remained elevated approximately fourfold over control for 15 min. The activation was accompanied by RhoA translocation to the cell membrane. However, thrombin did not activate Cdc42 or Rac1 within similar time points, indicating selectivity of activation responses by Rho GTPases. Pretreatment of HMEC with 10 micro M forskolin plus 1 micro M IBMX (FI) to elevate intracellular cAMP levels inhibited both thrombin-induced RhoA activation and translocation responses. FI additionally inhibited thrombin-mediated dissociation of RhoA from guanine nucleotide dissociation inhibitor (GDI) and enhanced in vivo incorporation of (32)P by GDI. HMEC pretreated in parallel with FI showed >50% reduction in time for the thrombin-mediated resistance drop to return to near baseline and inhibition of approximately 23% of the extent of resistance drop. Infection of HMEC with replication-deficient adenovirus containing the protein kinase A inhibitor gene (PKA inhibitor) blocked both the FI-mediated protective effects on RhoA activation and resistance changes. In conclusion, the results provide evidence that PKA inhibited RhoA activation in endothelial cells, supporting a signaling mechanism of protection against vascular endothelial barrier dysfunction.  相似文献   

13.
Migration of epithelial cell sheets, a process involving F-actin restructuring through Rho family GTPases, is both physiologically and pathophysiologically important. Our objective was to clarify the mechanisms whereby the downstream RhoA effector Rho-associated coil-coil-forming kinase (ROCK) influences coordinated epithelial cell motility. Although cells exposed to a pharmacological ROCK inhibitor (Y-27632) exhibited increased spreading in wound closure assays, they failed to migrate in a cohesive manner. Two main phenomena were implicated: the formation of aberrant protrusions at the migrating front and the basal accumulation of F-actin aggregates. Aggregates reflected increased membrane affiliation and detergent insolubility of the actin-binding protein ezrin and enhanced coassociation of ezrin with the membrane protein CD44. While F-actin aggregation following ROCK inhibition was recapitulated by inhibiting myosin light chain (MLC) phosphorylation with the MLC kinase inhibitor ML-7, the latter did not influence protrusiveness and, in fact, significantly decreased cell migration. Our results suggest that excessive protrusiveness downstream of ROCK inhibition reflects an influence of ROCK on F-actin stability via LIM kinase 1 (LIMK-1), which phosphorylates and inactivates cofilin. Y-27632 reduced the levels of both active LIMK-1 and inactive cofilin (phospho forms), and expression of a dominant negative LIMK-1 mutant stimulated leading edge protrusiveness. Furthermore, Y-27632-induced protrusions were partially reversed by overexpression of LIMK-1 to restore cofilin phosphorylation. In summary, our results provide new evidence suggesting that adhesive and protrusive events involved in organized epithelial motility downstream of ROCK are separately coordinated through the phosphorylation of (respectively) MLC and cofilin.  相似文献   

14.
Agonist activation of the small GTPase, RhoA, and its effector Rho kinase leads to down-regulation of smooth muscle (SM) myosin light chain phosphatase activity, an increase in myosin light chain (RLC(20)) phosphorylation and force. Cyclic nucleotides can reverse this process. We report a new mechanism of cAMP-mediated relaxation through Epac, a GTP exchange factor for the small GTPase Rap1 resulting in an increase in Rap1 activity and suppression of RhoA activity. An Epac-selective cAMP analog, 8-pCPT-2'-O-Me-cAMP ("007"), significantly reduced agonist-induced contractile force, RLC(20), and myosin light chain phosphatase phosphorylation in both intact and permeabilized vascular, gut, and airway SMs independently of PKA and PKG. The vasodilator PGI(2) analog, cicaprost, increased Rap1 activity and decreased RhoA activity in intact SMs. Forskolin, phosphodiesterase inhibitor isobutylmethylxanthine, and isoproterenol also significantly increased Rap1-GTP in rat aortic SM cells. The PKA inhibitor H89 was without effect on the 007-induced increase in Rap1-GTP. Lysophosphatidic acid-induced RhoA activity was reduced by treatment with 007 in WT but not Rap1B null fibroblasts, consistent with Epac signaling through Rap1B to down-regulate RhoA activity. Isoproterenol-induced increase in Rap1 activity was inhibited by silencing Epac1 in rat aortic SM cells. Evidence is presented that cooperative cAMP activation of PKA and Epac contribute to relaxation of SM. Our findings demonstrate a cAMP-mediated signaling mechanism whereby activation of Epac results in a PKA-independent, Rap1-dependent Ca(2+) desensitization of force in SM through down-regulation of RhoA activity. Cyclic AMP inhibition of RhoA is mediated through activation of both Epac and PKA.  相似文献   

15.
Dynamic remodeling of intercellular junctions is a critical determinant of epithelial barrier function in both physiological and pathophysiological states. While the disassembly of epithelial tight junctions (TJ) and adherens junctions (AJ) has been well-described in response to pathogens and other external stressors, the role of stress-related signaling in TJ/AJ regulation remains poorly understood. The aim of this study was to define the role of stress-activated c-Jun N-terminal kinase (JNK) in disruption of intercellular junctions in model intestinal epithelia. We show that rapid AJ/TJ disassembly triggered by extracellular calcium depletion of T84 and SK-CO15 cell monolayers was accompanied by activation (phosphorylation) of JNK, and prevented by pharmacological inhibitors of JNK. The opposite process, TJ/AJ reassembly, was accelerated by JNK inhibition and suppressed by the JNK activator anisomycin. JNK1 but not JNK2 was found to colocalize with intercellular junctions, and siRNA-mediated down-regulation of JNK1 attenuated the TJ/AJ disruption caused by calcium depletion. JNK inhibition also blocked formation of characteristic contractile F-actin rings in calcium-depleted epithelial cells, suggesting that JNK regulates junctions by remodeling the actin cytoskeleton. In this role JNK acts downstream of the actin-reorganizing Rho-dependent kinase (ROCK), since ROCK inhibition abrogated JNK phosphorylation and TJ/AJ disassembly after calcium depletion. Furthermore, JNK acts upstream of F-actin-membrane linker proteins of the ERM (ezrin-radixin-moesin) family, but in a complex relationship yet to be fully elucidated. Taken together, our findings suggest a novel role for JNK in the signaling pathway that links ROCK and F-actin remodeling during disassembly of epithelial junctions.  相似文献   

16.
Summary Exposure of cells to phorbol ester activates protein kinase C (PKC) to induce apoptosis or differentiation, depending on the cellular context. In erythroblastic cell lines, TF-1 and D2, upregulation of the RhoA signaling promotes phorbol ester-induced apoptosis through activating Rho-associated kinase (ROCK)/phosphorylation of myosin light chain (MLC), thus generating membrane contraction force. As a result, cell adhesion is inhibited and death receptor-mediated death pathway is activated in these cells with a concurrent changes in nucleocytoplasmic signaling for protein trafficking. A microtubule-regulated GEF-H1, which is a specific RhoA activator, was identified to contribute to RhoA activation in these cells. Thus, a cytoskeleton-regulated RhoA signaling cooperates with PKC activation constitutes a cellular context to determine the cell fate in response to phorbol ester stimulation.  相似文献   

17.
The cAMP-PKA cascade is a recognized signaling pathway important in inhibition of inflammatory injury events such as endothelial permeability and leucocyte trafficking, and a critical target of regulation is believed to be inhibition of Rho proteins. Here, we hypothesize that PKA directly phosphorylates GTP dissociation inhibitor (GDI) to negatively regulate Rho activity. Amino acid analysis of GDIalpha showed two potential protein kinase A (PKA) phosphorylation motifs, Ser(174) and Thr(182). Using in vitro kinase assay and mass spectrometry, we found that the purified PKA catalytic subunit phosphorylated GDIalpha-GST fusion protein and PKA motif-containing GDIalpha peptide at Ser(174), but not Thr(182). Transfection of COS-7 cells with mutated full-length GDIalpha at Ser(174) to Ala(174) (GDIalpha-Ser(174A)) abrogated the ability of cAMP to phosphorylate GDIalpha. However, mutation of Thr(182) to Ala(182) (GDIalpha-Thr(182A)) did not abrogate, and cAMP increased phosphorylation of GDIalpha to a similar extent as wild-type GDIalpha transfectants. The mutant GDIalpha-Ser(174A), but not GDIalpha-Thr(182A), was unable to prevent cAMP-mediated inhibition of Rho-dependent serum-response element reporter activity. Furthermore, the mutant GDIalpha-Ser(174A) was unable to prevent the thrombin-induced RhoA activation. Coprecipitation studies indicated that neither mutation of the PKA consensus sites nor phosphorylation alter GDIalpha binding with RhoA, suggesting that phosphorylation of Ser(174) regulated preformed GDIalpha-RhoA complexes. The findings provide strong support that the selective phosphorylation at Ser(174) by PKA is a signaling pathway in the negative regulation of RhoA activity and therefore could be a potential protective mechanism for inflammatory injury.  相似文献   

18.
19.
Bronchial epithelial cell migration is required for the repair of damaged airway epithelium. We hypothesized that bronchial epithelial cell migration during wound repair is influenced by cAMP and the activity of its cyclic nucleotide-dependent protein kinase, protein kinase A (PKA). We found that, when confluent monolayers of bronchial epithelial cells are wounded, an increase in PKA activity occurs. Augmentation of PKA activity with a cell-permeable analog of cAMP, dibutyryl adenosine 3',5'-cyclic monophosphate, isoproterenol, or a phosphodiesterase inhibitor accelerated migration of normal bronchial epithelial cells in in vitro wound closure assays and Boyden chamber migration assays. A role for PKA activity was also confirmed with a PKA inhibitor, KT-5720, which reduced stimulated migration. Augmentation of PKA activity reduced the levels of active Rho and the formation of focal adhesions. These studies suggest that PKA activation modulates Rho activity, migration mechanisms, and thus bronchial epithelial repair mechanisms.  相似文献   

20.
cAMP-mediated signaling mechanisms may destabilize or stabilize the endothelial barrier, depending on the origin of endothelial cells. Here, microvascular coronary [coronary endothelial cells (CEC)] and macrovascular aortic endothelial cell (AEC) monolayers with opposite responses to cAMP were analyzed. Macromolecule permeability, isometric force, activation state of contractile machinery [indicated by phosphorylation of regulatory myosin light chains (MLC), activity of MLC kinase, and MLC phosphatase], and dynamic changes of adhesion complex proteins (translocation of VE-cadherin and paxillin) were determined. cAMP signaling was stimulated by the adenosine receptor agonist 5'-N-(ethylcarboxamido)-adenosine (NECA), the -adrenoceptor agonist isoproterenol (Iso), or by the adenylyl cyclase activator forskolin (FSK). Permeability was increased in CEC and decreased in AEC on stimulation with NECA, Iso, or FSK. The effects could be inhibited by the PKA inhibitor Rp-8-CPT-cAMPS and imitated by the PKA activator Sp-cAMPS. Under cAMP/PKA-dependent stimulation, isometric force and MLC phosphorylation were reduced in monolayers of either cell type, due to an activation of MLC phosphatase. In CEC but not in AEC, FSK induced delocalization of VE-cadherin and paxillin from cellular adhesion complexes as indicated by cell fractionation and immunofluorescence microscopy. In conclusion, decline in contractile activation and isometric force contribute to cAMP/PKA-mediated stabilization of barrier function in AEC. In CEC, this stabilizing effect is overruled by cAMP-induced disintegration of cell adhesion structures. endothelial cell adhesion; endothelial permeability; isometric force; myosin light chain kinase; myosin light chain phosphatase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号