共查询到20条相似文献,搜索用时 6 毫秒
1.
Li-Huang Zha PhD Jun Zhou MD Tang-Zhiming Li PhD Hui Luo PhD Men-Qiu Zhang PhD Sheng Li PhD Zai-Xin Yu PhD 《Journal of cellular physiology》2019,234(9):15963-15976
Phosphoinositide 3-kinase (PI3K) activation plays a critical role in the pulmonary vascular remodeling of pulmonary hypertension (PH). The nucleotide-oligomerization domain (NOD)-like receptor subfamily C3 (NLRC3) inhibits proliferation and inflammation via PI3K signaling in cancer. We previously showed NLRC3 was significantly reduced in PH patients, but the mechanism of function remains unclear. This study aimed to determine the potential role of NLRC3 in PH. We found that NLRC3 was downregulated in the pulmonary arteries of PH animal models and platelet-derived growth factor-BB (PDGF-BB) stimulated pulmonary arterial smooth muscle cells (PASMCs). NLRC3 pretreatment reduced right ventricular systolic pressure, attenuated pulmonary vascular remodeling and RVHI, and ameliorated proliferation, migration, and inflammation. Monocrotaline (MCT)- and PDGF-BB-mediated PI3K activation were suppressed by NLRC3 pretreatment. 740Y-P decreased the effect of NLRC3. Collectively, NLRC3 protected against MCT-induced rat PH and PDGF-BB-induced PASMC proliferation, migration, and inflammation through a mechanism involving PI3K inhibition. NLRC3 may have a therapeutic effect on PH and provide a promising therapeutic strategy for PH. 相似文献
2.
Rajendra Karki R. K. Subbarao Malireddi Qifan Zhu 《Cell cycle (Georgetown, Tex.)》2017,16(13):1243-1251
Nucleotide-binding domain, leucine-rich-repeat–containing proteins (NLRs) are intracellular innate immune sensors of pathogen-associated and damage-associated molecular patterns. NLRs regulate diverse biologic processes such as inflammatory responses, cell proliferation and death, and gut microbiota to attenuate tumorigenesis. In a recent publication in Nature, we identified NLRC3 as a negative regulator of PI3K–mTOR signaling and characterized its potential tumor suppressor function. Enterocytes lacking NLRC3 cannot control cellular proliferation because they are unable to suppress activation of PI3K–mTOR signaling pathways. In this Extra-View, we explore possible mechanisms through which NLRC3 regulates cellular proliferation and cell death. Besides interacting with PI3K, NLRC3 associates with TRAF6 and mTOR, confirming our recent finding that NLRC3 negatively regulates the PI3K–mTOR axis. Herein, we show that NLRC3 suppresses c-Myc expression and activation of PI3K–AKT targets FoxO3a and FoxO1 in the colon of Nlrc3?/? mice, suggesting that additional signaling pathways contribute to increased cellular proliferation. Moreover, NLRC3 suppresses colorectal tumorigenesis by promoting cellular apoptosis. Genes encoding intestinal stem cell markers BMI1 and OLFM4 are upregulated in the colon of Nlrc3?/? mice. Herein, we discuss recent findings and explore mechanisms through which NLRC3 regulates PI3K–mTOR signaling. Our studies highlight the therapeutic potential of modulating NLRC3 to prevent and treat cancer. 相似文献
3.
4.
Deng W Gopal YN Scott A Chen G Woodman SE Davies MA 《Pigment cell & melanoma research》2012,25(2):248-258
BRAF inhibition is highly active in BRAF-mutant melanoma, but the degree and duration of responses is quite variable. Improved understanding of the mechanisms of de novo resistance may lead to rational therapeutic strategies with improved efficacy. Proteomic analysis of BRAF-mutant, PTEN-wild-type human melanoma cell lines treated with PLX4720 demonstrated that sensitive and de novo resistant lines exhibit similar RAS-RAF-MEK-ERK pathway inhibition, but the resistant cells exhibited durable activation of S6 and P70S6K. Treatment with the mTOR inhibitor rapamycin blocked activation of P70S6K and S6, but it also increased activation of AKT and failed to induce cell death. Combined treatment with rapamycin and PX-866, a PI3K inhibitor, blocked the activation of S6 and AKT and resulted in marked cell death when combined with PLX4720. The results support the rationale for combined targeting of BRAF and the PI3K-AKT pathways and illustrate how target selection will be critical to such strategies. 相似文献
5.
Zhouguang Wang Liping Jiang Ran Chen Xiaofang Fan Huanmian Zhu Liping Han Xiaokun Li Jian Xiao Xiaoxia Kong 《Journal of cellular and molecular medicine》2014,18(3):542-553
Apelin is highly expressed in the lungs, especially in the pulmonary vasculature, but the functional role of apelin under pathological conditions is still undefined. Hypoxic pulmonary hypertension is the most common cause of acute right heart failure, which may involve the remodeling of artery and regulation of autophagy. In this study, we determined whether treatment with apelin regulated the proliferation and migration of rat pulmonary arterial smooth muscle cells (SMCs) under hypoxia, and investigated the underlying mechanism and the relationship with autophagy. Our data showed that hypoxia activated autophagy significantly at 24 hrs. The addition of exogenous apelin decreased the level of autophagy and further inhibited pulmonary arterial SMC (PASMC) proliferation via activating downstream phosphatidylinositol‐3‐kinase (PI3K)/protein kinase B (Akt)/the mammalian target of Rapamycin (mTOR) signal pathways. The inhibition of the apelin receptor (APJ) system by siRNA abolished the inhibitory effect of apelin in PASMCs under hypoxia. This study provides the evidence that exogenous apelin treatment contributes to inhibit the proliferation and migration of PASMCs by regulating the level of autophagy. 相似文献
6.
Dong-Hui Xu Guo-Nan Chi Cong-Hai Zhao Dong-Yuan Li 《Journal of cellular biochemistry》2019,120(5):7516-7526
Glioma is a common primary brain tumor with high mortality rate and poor prognosis. Long noncoding RNA maternally expressed gene 3 (MEG3) is a tumor suppressor in diverse cancer types. However, the role of MEG3 in glioma remains unclear. We aimed to explore the effects of MEG3 on U251 cells as well as the underlying mechanisms. U251 cells were stably transfected with different recombined plasmids to overexpress or silence MEG3. Effects of aberrantly expressed MEG3 on cell viability, migration, apoptosis, expressions of apoptosis-associated and autophagy-associated proteins, and phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all evaluated. Then, messenger RNA (mRNA) and protein expression of Sirt7 in cells abnormally expressing MEG3 were estimated. In addition, effects of abnormally expressed MEG3 and Sirt7 on U251 cells were determined to reveal the underlying mechanism of MEG3-associated modulation. Cell viability and migration were significantly reduced by MEG3 overexpression whereas cell apoptosis as well as Bax and cleaved caspase-3/-9 proteins were obviously induced. Beclin-1 and LC3-II/LC3-I were upregulated and p62 was downregulated in MEG3 overexpressed cells. In addition, the autophagy pharmacological inhibitor (3-methyladenine, 3-MA) affected the effect of MEG3 overexpression on cell proliferation. Furthermore, the phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all reduced by MEG3 overexpression. Sirt7 was positively regulated by MEG3 expression, and effects of MEG3 overexpression on U251 cells were ameliorated by Sirt7 silence. MEG3 suppressed cell proliferation and migration but promoted autophagy in U251 cells through positively regulating Sirt7, involving in the inhibition of the PI3K/AKT/mTOR pathway. 相似文献
7.
Qi Wang Quanwei Zhang Yong Zhang Xingxu Zhao 《Journal of cellular biochemistry》2019,120(4):6729-6740
Oxoglutarate receptor 1 (OXGR1), as one of the intermediates in G protein-coupled receptors (GPCRs), plays a crucial role in the citric acid cycle receptor of α-ketoglutarate and metabolism. GPCR can control the cell proliferation by regulating the downstream signaling of G protein signaling pathways. The PI3K/AKT pathway transmits the downstream signals of GPCRs and receptor tyrosine kinases. However, the specific role of OXGR1 promoting cell proliferation and differentiation are still unknown. In current study, the over-expression vector and knockdown sequence of yak OXGR1 were transfected into yak fibroblasts, and the effects were detected by a series of assays. The results revealed that OXGR1 expression in yak lung parenchyma tissue was significantly higher than that of other tissues. In yak fibroblasts, the upregulated expression of OXGR1 resulted in activating the PIK3CG (downstream signal) of the PI3K/AKT1 pathway that can upregulated the expression of proliferation genes ( CDK1, PCNA, and CyclinD1) and promote cell proliferation. Conversely, the downregulated expression of OXGR1 inhibited cell proliferation via PI3K/AKT1 pathway. Cell cycle and cell proliferation assays demonstrated that over-expression of OXGR1 can enhanced the DNA synthesis and promoted yak fibroblasts proliferation. While the conversely, knockdown of OXGR1 can decreased DNA synthesis and inhibited cell proliferation. These results illustrated that changes of OXGR1 expression can trigger the fibroblasts proliferation via PI3K/AKT signaling pathway, which indicating that OXGR1 is a novel regulator for cell proliferation and differentiation. Furthermore, these results provide evidence supporting the functional role of GPCRs-PI3K-AKT1 and OXGR1 in cell proliferation. 相似文献
8.
Wei Dai Yong gang Dai Dong feng Ren Da wei Zhu 《Journal of biochemical and molecular toxicology》2023,37(5):e23313
This study investigated that dieckol (DKL), a natural drug, inhibits colon cancer cell proliferation and migration by inhibiting phosphoinositide-3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) phosphorylation in HCT-116 cells. The cells were treated with DKL in various concentrations (32 and 50 μM) for 24 h and then analyzed for various experiments. MTT (tetrazolium bromide) and crystal violet assay investigated DKL-mediated cytotoxicity. Dichlorodihydrofluorescein diacetate staining was used to assess the reactive oxygen species (ROS) measurement, and apoptotic changes were studied by dual acridine orange and ethidium bromide staining. Protein expression of cell survival, cell cycle, proliferation, and apoptosis protein was evaluated by western blot analysis. Results indicated that DKL produces significant cytotoxicity in HCT-116, and the half-maximal inhibitory concentration was found to be 32 μM for 24-h incubation. Moreover, effective production of ROS and enhanced apoptotic signs were observed upon DKL treatment in HCT-116. DKL induces the expression of phosphorylated PI3K, AKT, and mToR-associated enhanced expression of cyclin-D1, proliferating cell nuclear antigen, cyclin-dependent kinase (CDK)-4, CDK-6, and Bcl-2 in HCT-116. In addition, proapoptotic proteins such as Bax, caspase-9, and caspase-3 were significantly enhanced by DKL treatment in HCT-116. Hence, DKL has been considered a chemotherapeutic drug by impeding the expression of PI3K-, AKT-, and mTOR-mediated inhibition of proliferation and cell cycle-regulating proteins. 相似文献
9.
Long noncoding RNA Breast Cancer Antiestrogen Resistance 4 (BCAR4) has been identified to be oncogenic in several cancers. In our study, we demonstrated that BCAR4 expression was significantly upregulated in glioma tissues compared with paired nontumor tissues. In addition, higher BCAR4 level was associated with poor overall survival in patients with glioma. Besides, we also discovered that knockdown of BCAR4 inhibited cell proliferation, whereas BCAR4 overexpression promoted this process. Intriguingly, we proved a cellular transformation of normal human astrocyte cells (NHAs) in response to enforced expression of BCAR4. In addition, we revealed that BCAR4 affected cell proliferation in glioma cells by promoting cell cycle progression and inhibiting cell apoptosis. Mechanistically, we uncovered that BCAR4 activated PI3K/AKT signaling pathway in glioma through upregulating EGFR and interacting with it. Moreover, activating PI3K/AKT pathway could reverse the repressive effects caused by BCAR4 silence on the biological behaviors of glioma cells, whereas inhibition of this pathway rescued the impact of BACR4 upregulation in NHAs. These findings disclosed that BCAR4 contributes to glioma progression by enhancing cell growth via activating EGFR/PI3K/AKT pathway, providing potent evidence that BCAR4 could be an effective new target for treatment and prognosis of glioma patients. 相似文献
10.
Xiaocen Liu Mengying Zhang Xiaolong Zhu Yingying Wang Kun Lv Hui Yang 《Translational oncology》2021,14(11):101196
BackgroundGlioma is a common malignant tumor of the central nervous system with a high incidence and mortality. Family with sequence similarity 60 member A (FAM60A) is a new subunit of the Sin3 deacetylase complex. The clinical significance and biologic role of FAM60A in glioma remain unclear.MethodsThe expression of FAM60A in normal glial cells, glioma cells, and five-paired gliomas, and adjacent noncancerous tissues was quantified using real-time polymerase chain reaction (PCR) and western blotting. FAM60A protein expression in 179 archived, paraffin-embedded glioma samples was analyzed using immunohistochemistry. The roles of FAM60A in glioma cell proliferation and tumorigenicity were explored in vitro and in vivo. The underlying molecular mechanisms were elucidated using Western blot assay. Serum exosomal FAM60A levels of glioma patients were detected using electron microscopy, western blot, and real-time PCR.ResultsFAM60A expression was significantly up-regulated in glioma tissues and cell lines and positively associated with a worse outcome in glioma. Knockdown of FAM60A could inhibit glioma cell proliferation and tumorigenicity in vitro and in vivo. Besides, FAM60A expression was detectable in extracted serum exosomes with a higher expression in the glioma cancer group than in the normal group.ConclusionsLoss of FAM60A attenuates cell proliferation in glioma by suppressing PI3K/Akt/mTOR signaling pathways. Therefore, FAM60A may act as a prognostic biomarker and therapeutic target for glioma. 相似文献
11.
Xinxin Li Hehe Liu Haohan Wang Lingli Sun Fang Ding Wenqiang Sun Chunchun Han Jiwen Wang 《Bioscience reports》2014,34(5)
FST (follistatin) is essential for skeletal muscle development, but the intracellular signalling networks that regulate FST-induced effects are not well defined. We sought to investigate whether FST promotes the proliferation of myoblasts through the PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signalling. In the present study, we transfected the pEGFP-duFST plasmid and added PI3K and mTOR inhibitors to the medium of duck primary myoblasts. Then, we analysed the cellular phenotypic changes that occurred and analysed the expression of target genes. The results showed that FST promoted myoblast proliferation, induced the mRNA expression of PI3K, Akt, mTOR, 70-kDa ribosomal protein S6K (S6 kinase) and the protein expression of phospho-Akt (Thr308), mTOR, phospho-mTOR (serine 2448), phospho-S6K (Ser417), inhibited the mRNA expression of FoxO1, MuRF1 (muscle RING finger-1) and the protein expression of phospho-FoxO1 (Ser256). Moreover, we found that the overexpression of FST could alleviate the inhibitory effect of myoblast proliferation caused by the addition of , a PI3K inhibitor. Additionally, the overexpression of duck FST also relieved the inhibition of myoblast proliferation caused by the addition of rapamycin (an mTOR inhibitor) through PI3K/Akt/mTOR signalling. In light of the present results, we hypothesize that duck FST could promote myoblast proliferation, which is dependent on PI3K/Akt/mTOR signalling. LY294002相似文献
12.
Wenyang Jiang Jindan Kai Donghang Li Zhongheng Wei Ying Wang Wei Wang 《Journal of cellular physiology》2020,235(10):7194-7203
Lung cancer remains the leading cause of cancer-related death all over the world. In spite of the great advances made in surgery and chemotherapy, the prognosis of lung cancer patients is poor. A substantial fraction of long noncoding RNAs (lncRNAs) can regulate various cancers. A recent study has reported that lncRNA HOXB-AS3 plays a critical role in cancers. However, its biological function remains unclear in lung cancer progression. In the current research, we found HOXB-AS3 was obviously elevated in NSCLC tissues and cells. Functional assays showed that inhibition of HOXB-AS3 was able to repress A549 and H1975 cell proliferation, cell colony formation ability and meanwhile, triggered cell apoptosis. Furthermore, the lung cancer cell cycle was mostly blocked in the G1 phase whereas the cell ratio in the S phase was reduced. Also, A549 and H1975 cell migration and invasion capacity were significantly repressed by the loss of HOXB-AS3. The PI3K/AKT pathway has been implicated in the carcinogenesis of multiple cancers. Here, we displayed that inhibition of HOXB-AS3 suppressed lung cancer cell progression via inactivating the PI3K/AKT pathway. Subsequently, in vivo experiments were utilized in our study and it was demonstrated that HOXB-AS3 contributed to lung cancer tumor growth via modulating the PI3K/AKT pathway. Overall, we implied that HOXB-AS3 might provide a new perspective for lung cancer treatment via targeting PI3K/AKT. 相似文献
13.
Zechang Xin Duguang Li Feiyu Mao Yan Du Xiaodong Wang Peng Xu Zhennan Li Jianjun Qian Jie Yao 《Journal of cellular physiology》2020,235(11):8416-8423
Plastin-3 plays a key role in cancer cell proliferation and invasion, but its prognostic value in pancreatic cancer (PACA) remains poorly defined. In this study, we show that PLS3 messenger RNA is overexpressed in PACA tissue compared with normal tissue. We accumulated 207 cases of PACA specimens to perform immunohistochemical analysis and demonstrated that PLS3 levels correlate with T-classification (p < .001) and pathology (p < .001). Furthermore, overall survival rates (p < .001) in tumors with high PLS3 expression were poor, as assessed through Kaplan–Meier survival analysis. PLS3 was found to be an independent prognostic factor for PACA through multivariate Cox regression analysis. Moreover, we found that PLS3 enhances the proliferation and invasion of tumor cells as assessed through Cell Counting Kit-8, wounding healing assays, and Transwell assays. The upregulation of PLS3 also led to enhanced phosphatidylinositol-3 kinase/protein kinase B signaling in PACA cells. These data suggest that PLS3 is a biomarker to estimate PACA progression and represents a molecular target for PACA therapy. 相似文献
14.
Xiaohe Li Xiaoyang Ma Yang Miao Jianwei Zhang Buri Xi Wenqi Li Qianyi Zhang Li Chen Yue Yang Hongli Li Luqing Wei Honggang Zhou Cheng Yang 《Journal of cellular and molecular medicine》2023,27(3):422-434
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that seriously threatens the health of patients. The pathogenesis of IPF is still unclear, and there is a lack of effective therapeutic drugs. Myofibroblasts are the main effector cells of IPF, leading to excessive deposition of extracellular matrix (ECM) and promoting the progression of fibrosis. Inhibiting the excessive activation and relieving autophagy blockage of myofibroblasts is the key to treat IPF. PI3K/Akt/mTOR pathway plays a key regulatory role in promoting fibroblast activation and autophagy inhibition in lung fibrosis. Duvelisib is a PI3K inhibitor that can simultaneously inhibit the activities of PI3K-δ and PI3K-γ, and is mainly used for the treatment of relapsed/refractory chronic lymphocytic leukaemia (CLL) and small lymphocytic lymphoma tumour (SLL). In this study, we aimed to examine the effects of Duvelisib on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of Duvelisib on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of Duvelisib in lung fibroblasts in vitro. The in vivo experiments showed that Duvelisib significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro and in vivo pharmacological experiments showed that Duvelisib dose-dependently suppressed lung fibroblast activation and improved autophagy inhibition by inhibiting the phosphorylation of PI3K, Akt and mTOR. Our results indicate that Duvelisib can alleviate the severity of pulmonary fibrosis and provide potential drugs for the treatment of pulmonary fibrosis. 相似文献
15.
Chun‐Hong Wang Xiao‐Feng Li Li‐Fang Jin Yan Zhao Geng‐Jun Zhu Wei‐Zhang Shen 《Journal of biochemical and molecular toxicology》2019,33(8)
Non‐small–cell lung cancer (NSCLC) is one of the most prevalent type of lung cancers with an increased mortality rate in both developed and developing countries worldwide. Dieckol is one such polyphenolic drug extracted from brown algae which has proven antioxidant and anti‐inflammatory properties. In the present study, we evaluated the anticancer property of dieckol against NSCLC cell line A549. The LC50 value of dieckol was found to be 25 µg/mL by performing 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and the antiapoptotic property of dieckol was analyzed by dual staining technique with acridine orange/propidium iodide (AO/PI) stains. It was further confirmed with flow cytometry analysis with Annexin FITC and JC‐1 staining and the anti‐invasive property was assessed by Transwell assay. The molecular mechanism of dieckol anticancer activity was confirmed by estimating the levels of caspases and by estimating the signaling proteins of Pi3K/AKT/mTOR signaling pathway using the immunoblotting technique. Our data suggest that dieckol is potent anticancer agent, it effectively inhibits the invasive and migratory property A549 cells and it also induces apoptosis via inhibiting Pi3K/AKT/mTOR signaling, activating the tumor suppressor protein E‐cadherin signifying that dieckol is potent natural anticancer drug to treat NSCLC. 相似文献
16.
ABSTRACT Polycystic ovary syndrome (PCOS) is recognized as a general endocrine disease and reproductive disorder. Although evidence indicates that PCOS has a complex etiology and genetic basis, the pathogenic mechanisms and signal pathway in PCOS remain unclear. In this study, the normal structure of follicle and corpus luteum were observed, and no cyst nor hyperemia was observed under the light microscopic study with hematoxylin and eosin (H&E) staining. Eestosterone and progesterone were evaluated by radioimmunoassay in rat serum. The alterations of proliferative ability and cell cycle distribution of each group were assessed by Cell Counting Kit-8 (CCK8) assay and flow cytometry. The protein expression of p-mTOR/mTOR, p-PI3K/PI3K, p-AKT/AKT, and GAPDH were analyzed by western blotting. Both doses of PLB could benefit the ovarian morphology and polycystic property. PLBinduced a suppress effect on the proliferation of rat ovarian granulosa cells. In addition, PLB also induced concentration-dependent apoptosis in rat ovarian granulosa cells. The rat ovarian granulosa cells treated with PLB that the expression levels of p-AKT, p-mTOR, and p-PI3K were significantly decreased in a concentration-dependent manner. PLB not only plays a critical role in attenuating the pathology and polycystic property changes in the ovary but can also induce rat ovarian granulosa cell apoptosis through the PI3K/Akt/mTOR signal pathway. This study showed the innovative role of PLB in the pathogenesis of PCOS and provides a new therapeutic modality for the treatment of PCOS. 相似文献
17.
Neurotrophin 3 (NT3), a member of the neurotrophin family, antagonizes the proliferative effect of fibroblast growth factor 2 (FGF2) on cortical precursors. However, the mechanism by which NT3 inhibits FGF2-induced neural progenitor (NP) cell proliferation is unclear. Here, using an FGF2-dependent rat neurosphere culture system, we found that NT3 inhibits both FGF2-induced neurosphere growth and bromodeoxyuridine (BrdU) incorporation in a dose-dependent manner. U0126, a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, both inhibited FGF2-induced BrdU incorporation, suggesting that the extracellular signal-regulated kinase1/2 (ERK1/2) and PI3K pathways are required for FGF2-induced NP cell proliferation. NT3 significantly inhibited FGF2-induced phosphorylation of Akt and glycogen synthase kinase 3beta (GSK3beta), a downstream kinase of Akt, whereas phosphorylation of ERK1/2 was unaffected. The inhibitory effect of NT3 on FGF2-induced NP cell proliferation was abolished by LY294002, and treatment with SB216763, a specific GSK3 inhibitor, antagonized the NT3 effect, rescuing both neurosphere growth and BrdU incorporation. Moreover, experiments with anti-NT3 antibody revealed that endogenous NT3 also plays a role in inhibiting FGF2-induced NP cell proliferation, and that anti-NT3 antibody enhanced phospho-Akt and phospho-GSK3beta levels in the presence of FGF2. These findings indicate that FGF2-induced NP cell proliferation is inhibited by NT3 via the PI3K/GSK3 pathway. 相似文献
18.
Sapylin (OK-432) revealed biological properties in cancers. In this study, the effect of sapylin on lung cancer cell A549 was investigated. A549 cell lines were treated with sapylin (0.1, 0.5, and 1 KE/mL) for different time intervals. A549 cell proliferation and apoptosis was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide/Ki67 assay and flow cytometry, respectively. Western blot was used to determine the expressions of proteins involved in proliferation, apoptosis, and phosphoinositide 3-kinase/serine/threonine kinase (PI3K/AKT), Wnt3a/β-catenin signaling pathway. Level of intracellular reactive oxygen species (ROS) was insured by using the ROS kit. Sapylin inhibited A549 cell viability and the expressions of proliferation-related proteins (cyclin E1 and D1) in dose- and time-dependent manners. Sapylin promoted apoptosis in a dose- and time-dependent manners. Sapylin also promoted the expressions of apoptotic proteins (cleaved caspase-3 and 8) in dose- and time-dependent manners. Furthermore, sapylin increased the intracellular concentration of ROS in a dose-dependent manner. Besides, the high expression of ROS level might induce inhibition of cell viability and increase cell apoptosis. The mechanistic study revealed that sapylin inactivated the PI3K/AKT and Wnt3a/β-catenin signaling pathways. Our findings suggest that sapylin inhibits proliferation and promotes apoptosis in lung cancer cells, thus providing a new theoretical basis for the treatment of lung cancer. 相似文献
19.
Christina Y. Yim Emmanuel Bikorimana Ema Khan Joshua M. Warzecha Leah Shin Jennifer Rodriguez 《Cell cycle (Georgetown, Tex.)》2017,16(21):2146-2155
G0/G1 switch gene 2 (G0S2) is a direct retinoic acid target implicated in cancer biology and therapy based on frequent methylation-mediated silencing in diverse solid tumors. We recently reported that low G0S2 expression in breast cancer, particularly estrogen receptor-positive (ER+) breast cancer, correlates with increased rates of recurrence, indicating that G0S2 plays a role in breast cancer progression. However, the function(s) and mechanism(s) of G0S2 tumor suppression remain unclear. In order to determine potential mechanisms of G0S2 anti-oncogenic activity, we performed genome-wide expression analysis that revealed an enrichment of gene signatures related to PI3K/mTOR pathway activation in G0S2 null cells as compared to G0S2 wild-type cells. G0S2 null cells also exhibited a dramatic decreased sensitivity to PI3K/mTOR pathway inhibitors. Conversely, restoring G0S2 expression in human ER+ breast cancer cells decreased basal mTOR signaling and sensitized the cells to pharmacologic mTOR pathway inhibitors. Notably, we provide evidence here that the increase in recurrence seen with low G0S2 expression is especially prominent in patients who have undergone antiestrogen therapy. Further, ER+ breast cancer cells with restored G0S2 expression had a relative increased sensitivity to tamoxifen. These findings reveal that in breast cancer G0S2 functions as a tumor suppressor in part by repressing PI3K/mTOR activity, and that G0S2 enhances therapeutic responses to PI3K/mTOR inhibitors. Recent studies implicate hyperactivation of PI3K/mTOR signaling as promoting resistance to antiestrogen therapies in ER+ breast cancer. Our data establishes G0S2 as opposing this form of antiestrogen resistance. This promotes further investigation of the role of G0S2 as an antineoplastic breast cancer target and a biomarker for recurrence and therapy response. 相似文献
20.
Xiaohe Li Xiaoyang Ma Yang Miao Jianwei Zhang Buri Xi Wenqi Li Qianyi Zhang Li Chen Yue Yang Hongli Li Luqing Wei Honggang Zhou Cheng Yang 《Journal of cellular and molecular medicine》2023,27(3):422
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that seriously threatens the health of patients. The pathogenesis of IPF is still unclear, and there is a lack of effective therapeutic drugs. Myofibroblasts are the main effector cells of IPF, leading to excessive deposition of extracellular matrix (ECM) and promoting the progression of fibrosis. Inhibiting the excessive activation and relieving autophagy blockage of myofibroblasts is the key to treat IPF. PI3K/Akt/mTOR pathway plays a key regulatory role in promoting fibroblast activation and autophagy inhibition in lung fibrosis. Duvelisib is a PI3K inhibitor that can simultaneously inhibit the activities of PI3K‐δ and PI3K‐γ, and is mainly used for the treatment of relapsed/refractory chronic lymphocytic leukaemia (CLL) and small lymphocytic lymphoma tumour (SLL). In this study, we aimed to examine the effects of Duvelisib on pulmonary fibrosis. We used a mouse model of bleomycin‐induced pulmonary fibrosis to evaluate the effects of Duvelisib on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of Duvelisib in lung fibroblasts in vitro. The in vivo experiments showed that Duvelisib significantly alleviated bleomycin‐induced collagen deposition and improved pulmonary function. In vitro and in vivo pharmacological experiments showed that Duvelisib dose‐dependently suppressed lung fibroblast activation and improved autophagy inhibition by inhibiting the phosphorylation of PI3K, Akt and mTOR. Our results indicate that Duvelisib can alleviate the severity of pulmonary fibrosis and provide potential drugs for the treatment of pulmonary fibrosis. 相似文献