首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanorhynch tapeworms (Platyhelminthes: Cestoda) are among the most diverse and abundant groups of metazoan parasites of elasmobranchs and are a ubiquitous part of the marine food webs that include these apex predators. Here we present a comprehensive analysis of their phylogeny, character evolution and host associations based on 10 years of sampling effort, including representatives of 12 of 15 and 44 of 66 currently recognized trypanorhynch families and genera, respectively. Using a combination of ssrDNA and lsrDNA (Domains 1-3) for 79 and 80 taxa, respectively, we maintain one-to-one correspondence between molecules and morphology by scoring 45 characters from the same specimens used for sequencing, and provide museum vouchers for this material. Host associations are examined through likelihood-based ancestral character state reconstructions (ACSRs) and by estimating dates of divergence using strict and relaxed molecular clock models in a Bayesian context. Maximum parsimony and Bayesian inference analyses of rDNA produced well-resolved and strongly supported trees in which the trypanorhynchs formed two primary lineages and were monophyletic with respect to the diphyllidean outgroup taxa. These lineages showed marked differences in their rates of divergence which in turn resulted in differing support and stability characteristics within the lineages. Mapping of morphological characters onto the tree resulting from combined analysis of rDNA showed most traits to be highly plastic, including some previously considered of key taxonomic importance such as underlying symmetries in tentacular armature. The resulting tree was found to be congruent with the most recent morphologically based superfamily designations in the order, providing support for four proposed superfamilies, but not for the Tentacularioidea and Eutetrarhynchoidea. ACSRs based on the combined analysis of rDNA estimated the original hosts of the two primary parasite lineages to be alternatively rajiform batoids and carcharhiniform sharks. This fundamental split provides independent support for rejecting the notion that rays are derived sharks, and thus supports the most recent molecular phylogenies of the Neoselachii. Beyond the basal split between shark- and ray-inhabiting lineages, no pattern was found to suggest that the trypanorhynchs have closely tracked the evolutionary histories of these host lineages, but instead, it appears that host-switching has been common and that the subsequent evolution of the parasites has been ecologically driven primarily through overlap in the niches of their shark and ray hosts. Using a relaxed molecular clock model calibrated by means of host fossil data, the ray-inhabiting lineage is estimated to have diversified around the Jurassic-Cretaceous boundary, whereas the shark-inhabiting lineage is estimated to have diversified later, in the Middle Cretaceous. Although the large error associated with the estimated divergence dates prevents robust conclusions from being drawn, the dates are nevertheless found to be consistent in a relative sense with the origins of their major hosts groups. The erection and definition of the suborders Trypanobatoida and Trypanoselachoida, for the major clades of trypanorhynchs parasitizing primarily rays and sharks, respectively, is proposed for the two primary lineages recovered here.  相似文献   

2.
Abstract. Access to the ventral nerve cord in living specimens of Lumbriculus variegatus , an aquatic oligochaete, is normally impossible because surgical invasion induces segmental autotomy (self-fragmentation). We show here that nicotine is a powerful paralytic agent that reversibly immobilizes worms, blocks segmental autotomy, and allows experimental access to the nerve cord. Using nicotine-treated worms, we transected the ventral nerve cord and used non-invasive electrophysiological recordings and behavioral analyses to characterize the functional recovery of giant nerve fibers and other reflex pathways. Initially, after transection, medial giant fiber (MGF) and lateral giant fiber (LGF) spikes conducted up to, but not across, the transection site. Reestablishment of MGF and LGF through-conduction across the transection site occurred as early as 10 h (usually by 20 h) after transection. Analyses of non-giant-mediated behavioral responses (i.e., helical swimming and body reversal) were also made following nerve cord transection. Immediately after transection, functional reorganization of touch-evoked locomotor reflexes occurred, so that the two portions of the worm anterior and posterior to the transection site were independently capable of helical swimming and body reversal responses. Similar reorganization of responses occurred in amputated body fragments. Reversion back to the original whole-body pattern of swimming and reversal occurred as early as 8 h after transection. Thus, functional restoration of the non-giant central pathways appeared slightly faster than giant fiber pathways. The results demonstrate the remarkable plasticity of locomotor reflex behaviors immediately after nerve cord transection or segment amputation. They also demonstrate the exceptional speed and specificity of regeneration of the central pathways that mediate locomotor reflexes.  相似文献   

3.
Ubiquitin (Ub) ligation is implicated in active protein metabolism and subcellular trafficking and its impairment is involved in various neurologic diseases. In rat brain, we identified two novel Ub ligases, Momo and Sakura, carrying double zinc finger motif and RING finger domain. Momo expression is enriched in the brain gray matter and testis, and Sakura expression is more widely detected in the brain white matter as well as in many peripheral organs. Both proteins associate with the cell membranes of neuronal and/or glial cells. We examined their Ub ligase activity in vivo and in vitro using viral expression vectors carrying myc-tagged Momo and Sakura. Overexpression of either Momo or Sakura in mixed cortical cultures increased total polyubiquitination levels. In vitro ubiquitination assay revealed that the combination of Momo and UbcH4 and H5c, or of Sakura and UbcH4, H5c and H6 is required for the reaction. Deletion mutagenesis suggested that the E3 Ub ligase activity of Momo and Sakura depended on their C-terminal domains containing RING finger structure, while their N-terminal domains influenced their membrane association. In agreement, Sakura associating with the membrane was specifically palmitoylated. Although the molecular targets of their Ub ligation remain to be identified, these findings imply a novel function of the palmitoylated E3 Ub ligase(s).  相似文献   

4.
In humans and other vertebrates, reaction of organophosphates with a neuronal membrane protein, neuropathy target esterase (NTE), initiates events which culminate in axonal degeneration. The initiation process appears to involve modification of a property of the protein distinct from its esterase activity, subsequent to formation of a negatively charged adduct with the active site serine residue. Here, we show that membrane patches from liposomes containing NEST, a recombinant hydrophobic polypeptide comprising the esterase domain of human NTE, display a transmembrane ionic conductance with both stable and high-frequency flickering components. An asymmetric current-voltage relationship suggested that ion flow was favoured in one direction relative to the membrane and its associated NEST molecules. Flow of anions was slightly favoured compared with cations. The flickering current formed a much larger proportion of the overall conductance in patches containing wild-type NEST compared with the catalytically inactive S966A mutant form of the protein. The conductance across patches containing NEST, but not those with the S966A mutant, was significantly reduced after adding neuropathic organophosphates to the bathing medium. By contrast, non-neuropathic covalent inhibitors of the catalytic activity of NEST did not reduce NEST-mediated conductance. Future work may establish whether NTE itself mediates an organophosphate-sensitive ion flux across intracellular membranes within intact cells.  相似文献   

5.
6.
Summary Fibres growing from neurons of explanted dorsal root ganglia from 10 day chick embryos were transected and subsequently observed by light and electron microscopy after periods of a few to fifty minutes. Changes immediately proximal and distal to the cut together with alterations further away from the site of injury on both sides of the cut were recorded. Observations were also made on the growth cones of damaged axons and on changes in associated glial cells.Reactive and degenerative changes including the rotation, retraction and swelling of cut axons occurred rapidly. Electron microscopy revealed tracts of filamentous material close to the sealed-off ends of axons, swollen organelles such as mitochondria, and lamellar bodies of varying dimensions.Proximal to the injury and closer to the expiant, damaged and degenerating axons mingled with normal processes. Many contained only a fine granular material, others clumps of organelles, particularly mitochondria.Distal to the cut, microspikes were lost from some growth cones. The dense granular material filling microspikes and growth cones remained unchanged. Clumps of large clear vesicles, lamellar bodies and swollen degenerating mitochondria were present, not only within growth cones, but also in all parts of the axon distal to the cut.Glial cells associated with transected axons soon developed an electron dense cytoplasm containing swollen organelles. Large numbers of vesicles filled with a particulate substance were also found.The possible significance of the changes observed after transection are considered and discussed.The author wishes to thank Prof. D.W. James in whose laboratory at University College London these studies were initiated, Dr. A.R. Lieberman for his expert help and advice and the University of London Central Research Fund and Wellcome Trust for financial assistance  相似文献   

7.
The 13C‐labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of 13C‐enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α‐ketoglutarate into glutamate in neurons, and incorporation of α‐ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single 13C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate‐to‐glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2‐13C]acetate and [1,6‐13C]glucose, and proton decoupled 13C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that 13C‐labeled acetate and glucose contributed approximately equally to acetyl‐CoA (0.96) in astrocytes. As this method relies on a single 13C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions.

  相似文献   


8.
Abstract. After 8–10 segments of posterior ventral nerve cord were ablated in Lumbriculus variegatus , touch-evoked locomotor responses were evident both in segments anterior and posterior to the ablation site. However, responses in these two regions were independent and uncoupled. During recovery, four outcomes were observed at the ablation site: (Group 1) recovery of normal functions with no growth of new segments; (Group 2) formation of a laterally protruding, multi-segmented, ectopic head; (Group 3) formation of a laterally protruding, amorphous, and multi-segmented outgrowth; and (Group 4) segmental autotomy. In Groups 1 and 2, touch-evoked swimming and body reversal were studied. In addition, sensory fields and conduction properties of giant nerve fibers were examined near the ablation site. In some Group 1 worms, clear-cut behavioral and electrical signs of recovery and reconnection were seen by 3 d after ablation. By 8 d, all worms had recovered and exhibited response patterns comparable to those of normal worms. In Group 2 worms, with an ectopic head, segments posterior to the ablation (together with those in the ectopic head), exhibited touch-evoked swimming and body reversal responses resembling those of a complete worm. Segments anterior to the ectopic head were independently capable of locomotor responses. Medial and lateral giant fiber sensory fields in worms with ectopic heads reflected a pattern expected for two worms. Thus, through apparent morphallactic reorganization, a medial giant fiber sensory field emerged which included the ectopic head and 10–15 adjacent posterior segments. In contrast, electrical recordings showed longitudinal through-conduction of giant fiber spikes, across the ablation site. Histological examination revealed that the giant nerve fibers in the ectopic head were complexly interconnected with those in the main body axis.  相似文献   

9.
Neurodegenerative diseases such as Alzheimer’s and Parkinson’s currently affect ∼25 million people worldwide. The global incidence of traumatic brain injury (TBI) is estimated at ∼70 million/year. Both neurodegenerative diseases and TBI remain without effective treatments. We are utilizing adult Drosophila melanogaster to investigate the mechanisms of brain regeneration with the long-term goal of identifying targets for neural regenerative therapies. We specifically focused on neurogenesis, i.e., the generation of new cells, as opposed to the regrowth of specific subcellular structures such as axons. Like mammals, Drosophila have few proliferating cells in the adult brain. Nonetheless, within 24 hours of a penetrating traumatic brain injury (PTBI) to the central brain, there is a significant increase in the number of proliferating cells. We subsequently detect both new glia and new neurons and the formation of new axon tracts that target appropriate brain regions. Glial cells divide rapidly upon injury to give rise to new glial cells. Other cells near the injury site upregulate neural progenitor genes including asense and deadpan and later give rise to the new neurons. Locomotor abnormalities observed after PTBI are reversed within 2 weeks of injury, supporting the idea that there is functional recovery. Together, these data indicate that adult Drosophila brains are capable of neuronal repair. We anticipate that this paradigm will facilitate the dissection of the mechanisms of neural regeneration and that these processes will be relevant to human brain repair.  相似文献   

10.
Until now, there has been no answer to the question of whether specialized glial cells exist in the nervous system of platyhelminths. The identification of these cells in parasitic flatworms is difficult due to their organization as parenchymal animals. The goal of this study was to reveal and describe structural elements corresponding to the term glia in the CNS of the parasitic flatworm Grillotia erinaceus (Cestoda: Trypanorhyncha). Three types of glial cells are revealed. The first type consists of fibroblast-like cells located in the cerebral ganglia that contain fibrils and excrete onto the surface fibrillar material and possess desmosomes; the presumable function of fibroblast-like glial cells is the isolation and support of ganglionar neurons. Glial cells of the second type form a myelin-like envelope of giant axons and bulbar nerves of the scolex and have laminar cytoplasm; they are numerous and exceed the number of neurons in the composition of nerves. Glial cells of the third type form multilayer envelopes in the main nerve cords and make contacts with the excretory epithelium; however, specialized junctions with neurons were not found. The existence of glia in other free living and parasitic flatworms is discussed.  相似文献   

11.
Britz FC  Deitmer JW 《Peptides》2002,23(12):2117-2125
A myomodulin peptide has been suggested to mediate the response of the giant glial cells to stimulation of the Leydig interneuron in the central nervous system of the leech Hirudo medicinalis [Eur. J. Neurosci. 11 (1999) 3125]. We have now studied the glial response to the endogenous leech MM peptide (GMGALRL-NH(2), MMHir). The peptide evokes a membrane outward current (EC(50) approximately 2 microM), which neither desensitizes nor shows any sign of run-down, and elicits a K(+) conductance increase of the glial cell membrane. The peptidase inhibitor phenylmethylsulfonyl fluoride (PMSF) enhances the glial current response, suggesting the presence of endogenous extracellular peptidases.  相似文献   

12.
The antennal system of the moth Manduca sexta is a useful model for studies of the development of olfactory glomeruli, the complex synaptic structures that typically underlie the initial processing of olfactory input in vertebrates and invertebrates. In this review, we summarize cellular events in the construction of glomeruli in Manduca and highlight experiments that reveal factors that influence glomerulus development. By methodically manipulating each of various cell types, both neuronal and glial, that contribute to glomerular architecture, we have found that: olfactory receptor axons lay a template for developing glomeruli, stabilization of the template by glial cells is necessary to permit subsequent steps in development of the glomeruli, and the hormone that regulates adult development causes production of adequate numbers of glial cells. Neither electrical activity nor the presence of a serotonin-containing neuron that persists throughout development is required for a glomerular pattern to develop; these factors might, however, influence the synaptic organization of individual glomeruli. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
This review examines aspects of cetacean brain structure related to behaviour and evolution. Major considerations include cetacean brain-body allometry, structure of the cerebral cortex, the hippocampal formation, specialisations of the cetacean brain related to vocalisations and sleep phenomenology, paleoneurology, and brain-body allometry during cetacean evolution. These data are assimilated to demonstrate that there is no neural basis for the often-asserted high intellectual abilities of cetaceans. Despite this, the cetaceans do have volumetrically large brains. A novel hypothesis regarding the evolution of large brain size in cetaceans is put forward. It is shown that a combination of an unusually high number of glial cells and unihemispheric sleep phenomenology make the cetacean brain an efficient thermogenetic organ, which is needed to counteract heat loss to the water. It is demonstrated that water temperature is the major selection pressure driving an altered scaling of brain and body size and an increased actual brain size in cetaceans. A point in the evolutionary history of cetaceans is identified as the moment in which water temperature became a significant selection pressure in cetacean brain evolution. This occurred at the Archaeoceti - modern cetacean faunal transition. The size, structure and scaling of the cetacean brain continues to be shaped by water temperature in extant cetaceans. The alterations in cetacean brain structure, function and scaling, combined with the imperative of producing offspring that can withstand the rate of heat loss experienced in water, within the genetic confines of eutherian mammal reproductive constraints, provides an explanation for the evolution of the large size of the cetacean brain. These observations provide an alternative to the widely held belief of a correlation between brain size and intelligence in cetaceans.  相似文献   

14.
Lysophosphatidic acid (LPA) plays important roles in many biological processes, such as brain development, oncogenesis and immune functions, via its specific receptors. We previously demonstrated that LPA-primed astrocytes induce neuronal commitment of cerebral cortical progenitors (Spohr et al. 2008). In the present study, we analyzed neurite outgrowth induced by LPA-treated astrocytes and the molecular mechanism underlying this event. LPA-primed astrocytes increase neuronal differentiation, arborization and neurite outgrowth of developing cortical neurons. Treatment of astrocytes with epidermal growth factor (EGF) ligands yielded similar results, suggesting that members of the EGF family might mediate LPA-induced neuritogenesis. Furthermore, treatment of astrocytes with LPA or EGF ligands led to an increase in the levels of the extracellular matrix molecule, laminin (LN), thus enhancing astrocyte permissiveness to neurite outgrowth. This event was reversed by pharmacological inhibitors of the MAPK signaling pathway and of the EGF receptor. Our data reveal an important role of astrocytes and EGF receptor ligands pathway as mediators of bioactive lipids action in brain development, and implicate the LN and MAPK pathway in this process.  相似文献   

15.
Hippo通路是一个调控组织器官大小、细胞增殖、分化和凋亡的高度保守的信号通路.我们研究了氧化压力条件下Hippo通路在神经细胞中的作用,并发现哺乳动物STE20样的丝-苏氨酸蛋白激酶(MST1)可参与氧化应激诱导的神经细胞凋亡,其上游受非受体酪氨酸激酶c-Abl的调控.近期,我们研究发现MST1参与脑缺血引起的神经炎症,还发现Yes相关蛋白1(YAP)参与神经干细胞的自我更新.本文将介绍Hippo通路在中枢神经系统疾病和神经发育中的作用和机制研究的相关进展.  相似文献   

16.
Meinertzhagen, I.A. 2010. The organisation of invertebrate brains: cells, synapses and circuits. —Acta Zoologica (Stockholm) 91 : 64–71 Invertebrate brains are structurally diverse. Neuron numbers range from ~102 to 108 in different groups, compared with larger numbers in vertebrate brains, ~107 to 1014. The underpopulated brains of invertebrates are noted in their extreme cases for having few cells, and neurons that can be identified from animal to animal, many known in great detail. Although few in number, invertebrate neurons nevertheless comprise many classes. Correlated with the paucity of their number they are sparsely connected, many having ~50 synapses or fewer. Synaptic densities, roughly 1 per μm3 of neuropile, differ little from those for much larger vertebrate neurons. Invertebrate neurons differ from their vertebrate counterparts in the position of their soma, generally in a cortex surrounding the neuropile that consequently occupies a relatively small volume. Their axons typically lack myelin and, supporting a range of conduction velocities, have diameters that differ over a wide range, from 103 to 10?1μm. Nerves with thousands of axons differ from neuropile fascicles, which typically have 20 or less. Unlike most vertebrate synapses, but like those of the vertebrate retina, synapses in many invertebrate groups – probably all ecdysozoans and possibly some lophotrochozoans – have synaptic contacts with multiple postsynaptic elements, dyads, triads and so on.  相似文献   

17.
细胞转分化是通过基因重编程,诱导某种细胞直接转变为另一种细胞,而不经过其他中间状态的过程。神经元丢失是神经系统疾病中常见的病理过程,神经元丢失通常不可逆转,且造成运动、感觉、精神症状。而由于人中枢神经系统神经元再生能力十分有限,仅有部分区域在神经损伤的刺激下能够新生少量神经元。在这样的背景下,将神经胶质细胞(星形胶质细胞、小胶质细胞和少突胶质前体细胞)在神经元丢失处原位转分化为功能性神经元并整合进神经网络的治疗性策略,受到了广泛关注。近年来,学者通过在神经胶质细胞中将神经元命运决定的重要转录因子过表达或敲减等手段,成功实现其向神经元的转分化,取得多项重大进展,但由于目前研究手段的局限性、判断标准的分歧性、结果和结论间较难自洽等问题,部分研究成果的结论仍存在很大的争议。本文系统地回顾了神经胶质细胞转分化为神经元的发现与发展历程,总结了神经胶质细胞转分化为神经元的重要发现,并进行讨论与展望。  相似文献   

18.
Summary The mapping of the compound eyes onto the visual neuropils and the cell types in the lamina and the lobula complex of Bibionidae (Diptera) were studied by means of extracellular cobalt injections and Golgi impregnations. Dorsal and ventral eyes in males map into separate dorsal-and ventral neuropils up to the level of the lobula complex. The dorsal-eye lamina is unilayered, while the ventral-eye lamina in males and the lamina in females are multilayered: layers A and C are invaded by en-passant terminals of long visual fibres, layer B by the terminals of short visual fibres. Long visual fibres have a short and a long terminal in the ventral medulla with terminal specialisations in three distinct layers. Only one type of receptor ending exists in the dorsal medulla, the terminal branches of which are restricted to one layer only. Arrays of contralateral neurones are found in the medial part of the dorsal lobula, which receives input from the zone of binocular vision of the ipsilateral dorsal eye, and in the posterior dorsal lobula and lobula plate. The dorsal lobula plate contains large tangential neurones, the dendritic arborisations of which are revealed by cobalt injection into the thoracic ganglia. The divided brain of male bibionids offers the opportunity to investigate separately the nervous systems involved in sex-specific visually guided flight behaviour and in general visually guided flight control.  相似文献   

19.
The glycosyl phosphatidylinositol (GPI) lipid anchor, which directs GPI‐anchored proteins to the apical cell surface in certain polarized epithelial cell types, has been proposed to act as an axonal protein targeting signal in neurons. However, as several GPI‐anchored proteins have been found on both the axonal and somatodendritic cell‐surface domains of a variety of neuronal cell types, the role of the GPI anchor in protein localization to the axon remains unclear. To begin to address the role of the GPI anchor in neuronal protein localization, we used a replication‐incompetent retroviral vector to express a model GPI‐anchored protein, human placental alkaline phosphatase (hPLAP), in early postnatal mouse cerebellar granule neurons developing in vitro. Purified granule neurons were cultured in large mitotically active cellular reaggregates to allow retroviral infection of undifferentiated, proliferating granule neuron precursors. To more easily visualize hPLAP localization during the sequence of differentiation of single postmitotic granule neurons, reaggregates were dissociated following infection, plated as high‐density monolayers, and maintained for 1–9 days under serum‐free culture conditions. As we previously demonstrated for uninfected granule neurons developing in monolayer culture, hPLAP‐expressing granule neurons likewise developed in vitro through a series of discrete temporal stages highly similar to those observed in situ. hPLAP‐expressing granule neurons first extended either a single neurite or two axonal processes, and subsequently attained a mature, well‐polarized morphology consisting of multiple short dendrites and one or two axons that extended up to 3 mm across the culture substratum. hPLAP was expressed uniformly on the entire cell surface at each stage of granule neuron differentiation. Thus, it appears that the GPI anchor is not sufficient to confer axonal localization to an exogenous GPI‐anchored protein expressed in a well‐polarized primary neuronal cell type in vitro; other signals, such asthose present in the extracellular domain of these proteins, may be necessary for the polarized targeting or retention of axon‐specific GPI‐anchored proteins. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 119–141, 1999  相似文献   

20.
Summary Scanning electron microscopy and the penetration of horseradish peroxidase, especially from the ventricular surface, has been utilized to determine the distinctive properties of the posterior portion of the area postrema. This part of the organ is characterized by a non-ciliated surface composed of flattened cells, which appear less permeable to cisternally injected peroxidase than the ciliated ependymal cells covering the anterior part of the area postrema. However, more diffuse and rapid penetration of peroxidase into the posterior region is achieved by way of the perivascular spaces which appear in direct communication with the CSF. No such filling is noted in the anterior area postrema. The posterior portion also contains cells which appear to be rapidly penetrated by horseradish peroxidase and which may be important as a sensing mechanism. The chief distinction of the anterior part of the area postrema appears to be the presence of vascular connections with the choroid plexus.This work has been supported in part by Grant NB08549-02 from the National Institute of Neurological Diseases and Stroke and Health Science Advancement Award F-304-FR06115.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号