首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface architecture of the olfactory rosette ofHeteropneustes fossilis (Bloch) has been studied by scanning electron microscopy. The olfactory rosette is an oval structure composed of a number of lamellae arranged pinnately on a median raphe. The raphe is invested with epithelial cells and pits which represent goblet cell openings. On the basis of cellular characteristics and their distribution the lateral surface of each olfactory lamella is identified as sensory, ciliated non-sensory and non-ciliated non-sensory epithelium. The sensory epithelium is provided with receptor and supporting cells. The ciliated non-sensory epithelium is covered with dense cilia obscuring the presence of other cell types. The non-ciliated non-sensory epithelium is with many polygonal areas containing cells.  相似文献   

2.
The olfactory lamellae of the catfish H. fossilis (Bl.) was studied in the scanning electron microscope. The olfactory lamellae are composed of sensory and non-sensory epithelium. The sensory epithelium contains large numbers of ciliated receptor cells, whereas the non-sensory raphe epithelium is covered with a dense mat of non-sensory cilia. It is not known whether the olfactory cilia possess receptor sites.  相似文献   

3.
Four cell types are present in the olfactory epithelium of Neoceratodus forsteri, i.e., olfactory receptor cells, supporting cells, non-sensory ciliated cells, and basal cells. Only microvilli and no cilia were observed on the receptor cells. The neurotubules pass out into these microvilli. Conspicuous arrays of agranular endoplasmic reticulum are present in the nuclear region of the receptor cells. The supporting cells are provided with microvilli. These cells may be secretory. The non-sensory ciliated cells produce secretory granules containing acid mucopolysaccharides. A discontinuous zonula occludens appears to be present.  相似文献   

4.
Catla catla, Labeo rohita, and Cirrhinus mrigala represent important alimentary fish in India. Their reproduction/breeding depends on seasons. Fish perceive external factors-stimuli and chemical signals through the olfactory system that plays the key role in central regulation of reproduction. However, no electron microscopy data are available on organization of olfactory components of these fish. We studied organization of the olfactory organ in male L. rohita using scanning (SEM) and transmission electron microscopy (TEM). This organ consists of olfactory epithelium, a short nerve, and olfactory bulb. The olfactory organ is ovoid in shape and consists of about 47–52 lamellae in adults and about 14–20 lamellae in fingerlings. These lamellae originate from the midline raphe. By SEM, microvillar sensory and ciliated non-sensory cells were observed in the lamellae. TEM revealed microvillar receptor cell with rough endoplasmic reticulum and Golgi apparatus towards apical end. Basal cells were present at the base of receptor cell, supporting cells were located adjacent to the olfactory receptor neurons, while epithelial cells—in the nonsensory part of olfactory epithelium. Mast, blastema, and macrophage cells were also found at the basement membrane. This work is the first publication on ultrastructural organization of the olfactory system of the Indian major carp, which provides information about morphological and ultrastructural organization of the olfactory system and opens new avenues for further investigation of chemical neuroanatomy, sensory signal processing, and neural regulation of reproduction in the Indian major carp.  相似文献   

5.
Scanning electron microscopy of the channel catfish olfactory lamellae   总被引:3,自引:0,他引:3  
The olfactory lamellae of the channel catfish (Ictalurus punctatus) are composed of sensory and indifferent (non-sensory) epithelia organized into two distinct regions on both surfaces of each lamella. The smaller sensory region located adjacent to the midline raphe has fewer cilia per unit surface area than the indifferent epithelium and contains the olfactory neurons whose ciliated dendritic terminals occur at the epithelial surface. The indifferent epithelium, comprising the greater surface area of the olfactory lamella, is covered with a dense mat of non-sensory cilia. Fractured carbon dioxide critical point dried lamellar tissue revealed the underlying cellular structure. The lamellae are composed of two layers of epithelium enclosing a thin stromal layer. Olfactory receptors were observed in the fractured tissue only within the sensory epithelium.  相似文献   

6.
Catla catla, Labeo rohita, and Cirrhinus mrigala are important alimentary fish in India. Their reproduction (breeding) depends on season. The fish perceive external factors-stimuli and chemical signals through the olfactory system that plays the key role in the central regulation of reproduction. However, in the available literature, any electron microscopy data on organization of olfactory elements in these fish are absent. We have studied ultrastructure of the olfactory organ in male L. rohita by using scanning (SEM) and transmission electron microscopy (TEM). The olfactory organ consists of olfactory epithelium, a short nerve, and olfactory bulb. The organ has oval shape and consists of approximately 47-52 lamellae in adult fish and of 14-20 lamellae in fish at the stage of fingerling. These lamellae originate from the midline raphe. By using SEM, the presence of microvillar sensory and ciliated non-sensory cells in these lamellae is shown. By using TEM, a microvillar receptor cell is revealed, which has rough endoplasmic reticulum and Golgi apparatus towards the apical end. Basal cells are found at the base of the receptor cell; supporting cells are located adjacent to olfactory receptor neurons, while epithelial cells--in the non-sensory part of olfactory epithelium. Mast, blastema and macrophages cells are also found in the basal lamina. This work is the first publication on structural organization of olfactory system of the Indian major carp, which provides information about morphological and ultrastructural organization of olfactory system and opens new opportunities for study of chemical neuroanatomy, sensory signal processing, and nervous regulation of reproduction of the Indian major carp.  相似文献   

7.
The structure of the olfactory organ in larvae and adults of the basal anuran Ascaphus truei was examined using light micrography, electron micrography, and resin casts of the nasal cavity. The larval olfactory organ consists of nonsensory anterior and posterior nasal tubes connected to a large, main olfactory cavity containing olfactory epithelium; the vomeronasal organ is a ventrolateral diverticulum of this cavity. A small patch of olfactory epithelium (the “epithelial band”) also is present in the preoral buccal cavity, anterolateral to the choana. The main olfactory epithelium and epithelial band have both microvillar and ciliated receptor cells, and both microvillar and ciliated supporting cells. The epithelial band also contains secretory ciliated supporting cells. The vomeronasal epithelium contains only microvillar receptor cells. After metamorphosis, the adult olfactory organ is divided into the three typical anuran olfactory chambers: the principal, middle, and inferior cavities. The anterior part of the principal cavity contains a “larval type” epithelium that has both microvillar and ciliated receptor cells and both microvillar and ciliated supporting cells, whereas the posterior part is lined with an “adult‐type” epithelium that has only ciliated receptor cells and microvillar supporting cells. The middle cavity is nonsensory. The vomeronasal epithelium of the inferior cavity resembles that of larvae but is distinguished by a novel type of microvillar cell. The presence of two distinct types of olfactory epithelium in the principal cavity of adult A. truei is unique among previously described anuran olfactory organs. A comparative review suggests that the anterior olfactory epithelium is homologous with the “recessus olfactorius” of other anurans and with the accessory nasal cavity of pipids and functions to detect water‐borne odorants. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Summary The olfactory epithelium of the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius) has been studied with a conventional histochemical and a novel immunological staining technique. In both species, the sensory epithelium is arranged in folds separated by non-sensory epithelial tissue. In the nine-spined stickleback, intrinsic folds consisting of non-sensory cells are found in the apical part of the sensory epithelium where they divide the surface of the sensory epithelium into small islets. These non-sensory cells are non-ciliated, flattened and piled on top of each other; they contain numerous electron-translucent vesicles. The intrinsic folds are absent from the sensory epithelium of the three-spined stickleback. In both species, axons of receptor cells form a layer of fibers in the sensory epithelium immediately above the basal cells. In the three-spined stickleback, thick branches of the olfactory nerve are frequently found in this layer. These branches are only occasionally observed in the sensory epithelium of the nine-spined stickleback. Thus, the three-spined stickleback and the nine-spined stickleback show considerable differences in the organization of the sensory regions of the olfactory epithelium.  相似文献   

9.
The untrastructural organization of the olfactory epithelium of the cod Gadus morhua (L.) and the haddock Melanogrammus aeglefinus (L.) was studied using both transmission and scanning electron microscopy. The olfactory rosette was found to exhibit regional differences; the faces of the olfactory lamella were composed of sensory epithelium, the edges were non-sensory. The cellular organization of the olfactory epithelium was determined and consisted of bi-polar sensory neurones, supporting cells, mucous cells and basal cells. The ultrastructure of the sensory cells was consistent, having an elongate cell, the free surface of which terminated in an olfactory vesicle from which arose either four olfactory cilia or numerous microvilli. Ciliary aggregations have been found in the two species of gadoid fish studied; it is suggested that these structures aid in the separation and in the circulation of fluid between the lamellae. The surface structure of the supporting cells was found to be of two types: either ciliated or ridged; the former presenting distinct ciliated tufts, the latter showing definite, but unorganized, ridges over the epithelium surface.  相似文献   

10.
实验用鱼为全长35.5~40.0 cm的野生鲻(Mugil cephalus),采用石蜡切片以及透射电镜技术对鲻的嗅囊以及嗅板细胞进行观察。结果表明:鲻的嗅觉器官由左右两个呈扁平椭球形嗅囊构成,分别由前后两个鼻孔与外界相通。嗅囊长径与眼径之比为0.80,长径与短径之比为2.09。嗅囊的嗅轴左右两边分别有垂直于嗅轴并向上倾斜排列整齐的18~25个披针形嗅板,只有初级嗅板未见次级嗅板。嗅板由中央髓和两侧的嗅上皮两部分构成,中央髓由疏松的结缔组织和毛细血管组成。嗅上皮又分为感觉区和非感觉区,感觉区位于嗅板的内侧,具有发达纤毛,呈连续分布状态,非感觉区位于嗅板边缘,细胞纤毛较少。通过光镜和电镜的综合研究结果显示嗅上皮细胞大致可分为5类:基细胞、支持细胞、纤毛非感觉细胞、纤毛感觉细胞和柱状细胞。文章讨论了鲻的感官活动类型。  相似文献   

11.
Summary Sections from the nasal cavity of 12-day-old Swiss albino mice (NMRI strain) were subjected to lectin histochemistry. A panel of biotinylated lectins (Con A, WGA, s-WGA, PNA, SBA, DBA and UEA I) and a horseradish peroxidase-conjugated lectin (GSA II) showed marked differences in binding to the respiratory and the neuroepithelial cells. SBA (affinity for galactose andN-acetylgalactosamine), PNA (galactose) and WGA (sialic acids andN-acetylglucosamine) labelled the receptor neurons in the olfactory and vomeronasal epithelium. DBA (N-acetylgalactosamine) labelled a subgroup of about 5% of the olfactory receptor neurons, but most neurons in the vomeronasal organ. UEA I (fucose) and s-WGA (N-acetylglucosamine) intensely labelled the entire nerve cell population in the vomeronasal organ, but in the olfactory epithelium the labelling with these lectins was stratified. In the respiratory epithelium the ciliated cells were labelled with WGA and s-WGA, while the secretory cells bound most of the lectins. Thus different sugars are exposed on the surface of the different types of epithelia in the nasal cavity, providing a basis for selectivity in microbial attacks on these areas.  相似文献   

12.
In front of the olfactory organ in the northeastern Pacific hagfishes Eptatretus stoutii, E. deani, and Myxine circifrons there is a valve that may function to direct water in between the olfactory laminae. In Myxine circifrons the well developed valve is supposed to act alone, whereas the smaller valve in the two species of Eptatretus studied is supposed to act together with the horizontal extensions of the median olfactory lamina. No significant differences were found between the investigated species by ultrastructural examination. In the olfactory epithelium the supporting cells are provided with microvilli and generally contain a great amount of light secretory granules. Both ciliated olfactory receptor cells and microvillous olfactory receptor cells are present. The cilia show a 9 + 0 arrangement of the microtubules with a tendency for a dislocation of one pair of the microtubules toward the center of the cilium. These remarkable features of the olfactory receptor cells, not yet seen in other vertebrates, appear to be a character common to the myxinoid cyclostomes.  相似文献   

13.
中华须鳗嗅觉器官形态学观察   总被引:2,自引:1,他引:1  
利用光学显微镜和扫描电镜观察了10尾不同体长中华须鳗嗅觉器官的结构.结果表明:中华须鳗嗅囊呈楔型;嗅囊膜和嗅囊腹面的透明膜共同围成嗅囊腔;嗅囊长径与眼径的平均比值为2.2倍;每侧嗅囊嗅板数变化范围在30~44之间;嗅板远轴端有一纤毛和嗅孔密集的舌状游离突;嗅板上皮纤毛密集,纤毛细胞表现为3种类型:纤毛感觉细胞、纤毛非感觉细胞和微绒毛感觉细胞;纤毛非感觉细胞和微绒毛细胞也出现在嗅囊壁.嗅板上大量的纤毛表明,中华须鳗嗅囊的水动力机制应属嗅板纤毛搅动型(isosmates).除观察到嗅囊壁表面有两种类型的微嵴外,还首次在嗅板上观察到一种呈荸荠状的杆状细胞.  相似文献   

14.
Summary The osphradium of Planorbarius consists of a blindly-ending ciliated canal, formed by an infolding of the mantle epithelium, and a basal ganglion of nerve cells which is comparable in complexity with ganglia of the central nervous system. The distribution of cell types in the osphradial epithelium is specialised so that three regions can be recognised; the ciliated, the secretory and the sensory regions. The basal sensory region of the canal epithelium consists of ciliated cells and is innervated by sensory neurones of the osphradial ganglion. The middle secretory region contains mainly of mucus-secreting cells and the epithelium adjacent to the osphradial aperture of ciliated cells and secretory cells of a second type. The sensory neurones of the osphradial ganglion are bipolar or of a modified monopolar type. Other monopolar neurones, similar to those common in the central nervous system are of non-sensory function. The osphradium of Paludina, although of typical prosobranch form, possesses ciliated pits similar to the single canal of Planorbarius, which may indicate a shared modality of receptor function. A definite function cannot be ascribed to the pulmonate osphradium based on morphological evidence alone.  相似文献   

15.
The functional morphology of the olfactory organ in Spinachia spinachia (L.), which has only a single nare, was studied by light microscopy, scanning electron microscopy, and experimental investigations. It was shown that only the incoming water passes over the olfactory epithelium. The device for ventilating this olfactory organ is an accessory ventilation sac activated by respiratory pressure changes in the buccal cavity. This one-way water current over the olfactory epithelium in a monotrematous olfactory organ was found to be possible because of the morphology of the olfactory organ combined with movements of the lateral wall of the olfactory organ and the nasal tube during respiration. The olfactory epithelium is divided into irregular islets. Both ciliated receptor cells and microvillous receptor cells are present.  相似文献   

16.
Abstract The vomeronasal organ in the frog, genus Rana, is composed of three interconnected cavities; superior, middle and inferior, which are separated from and anterior to the principal olfactory cavity. The superior cavity is found just underneath the external naris and forms a vestibule both for the principal olfactory organ and the vomeronasal organ. The vomeronasal sensory epithelium is located in the medial region of the inferior cavity and contains ciliated cells and microvillous receptor cells. Inspection of microscopic sections of frogs that had been swimming in fluorescent colorants revealed fluorescence on the surface of the vomeronasal organ, but not on that of the olfactory organ. Observations in vivo show that water enters via the external naris by two fissures, one on each side of the movable nasal lid, passes the middle cavity to flow via the sensory epithelium of the inferior cavity. The design of the frog nose makes it possible for this amphibious animal to sample the chemical composition of its environment; above water the frog can inhale air and expose its olfactory organ to volatile substances; in water the vomeronasal organ samples water-borne substances. These new findings are discussed in relation to the air/water interface and the position of the amphibians in the evolution of terrestrial vertebrates.  相似文献   

17.
The olfactory epithelium of two closely related species of snowtrout—Schizothoraichthys progastus McClelland andSchizothorax richardsonii Gray (Subfamily: Schizothoracinae. family-Cyprinidae, Teleostei), from a perennial glacier-fed river Mandakini of Garhwal hills was studied by employing transmission electron microscopic method The olfactory lamella comprises two epithelia—anterior and posterior, with a stroma sandwiched in between. Both are strartified. The anterior one is thicker than posterior. InSchizothoraichithys progastus, the sensory part of epithelium has two types of receptor cells—ciliated receptor cells and rod cells whilst inSchizothorax richardsonii, there arc three types of receptor cells—ciliated receptor cells, microvillous receptor cells and rod cells in addition to sustentacular cells, basal cells and mucous cells. While inhabiting similar hillstream habitat, the differential ecological niches, feeding habits etc., account for the presence of different receptor cell types in these species, It implies the possible diversification at cellular and physiological levels so as to minimize the competition by using varied olfactory cues.  相似文献   

18.
In this study we use a taxon-based approach to examine previous, as well as new findings on several topics pertaining to the peripheral olfactory components in teleost fishes. These topics comprise (1) the gross anatomy of the peripheral olfactory organ, including olfactory sensory neuron subtypes and their functional parameters, (2) the ultrastructure of the olfactory epithelium, and (3) recent findings regarding the development of the nasal cavity and the olfactory epithelium. The teleosts are living ray-finned fish, and include descendants of early-diverging orders (e.g., salmon), specialized descendants (e.g., goldfish and zebrafish), as well as the Acanthopterygii, numerous species with sharp bony rays, including perch, stickleback, bass and tuna. Our survey reveals that the olfactory epithelium lines a multi-lamellar olfactory rosette in many teleosts. In Acanthopterygii, there are also examples of flat, single, double or triple folded olfactory epithelia. Diverse species ventilate the olfactory chamber with a single accessory nasal sac, whereas the presence of two sacs is confined to species within the Acanthopterygii. Recent studies in salmonids and cyprinids have shown that both ciliated olfactory sensory neurons (OSNs) and microvillous OSNs respond to amino acid odorants. Bile acids stimulate ciliated OSNs, and nucleotides activate microvillous OSNs. G-protein coupled odorant receptor molecules (OR-, V1R-, and V2R-types) have been identified in several teleost species. Ciliated OSNs express the G-protein subunit Gαolf/s, which activates cyclic AMP during transduction. Localization of G protein subunits Gα0 and Gαq/11 to microvillous or crypt OSNs, varies among different species. All teleost species appear to have microvillous and ciliated OSNs. The recently discovered crypt OSN is likewise found broadly. There is surprising diversity during ontogeny. In some species, OSNs and supporting cells derive from placodal cells; in others, supporting cells develop from epithelial (skin) cells. In some, epithelial cells covering the developing olfactory epithelium degenerate, in others, these retract. Likewise, there are different mechanisms for nostril formation. We conclude that there is considerable diversity in gross anatomy and development of the peripheral olfactory organ in teleosts, yet conservation of olfactory sensory neuron morphology. There is not sufficient information to draw conclusions regarding the diversity of teleost olfactory receptors or transduction cascades.  相似文献   

19.
Transmission electron microscopical study of olfactory epithelium of a mud-dwelling catfish,Heteropneustes fossilis (Bloch) shows receptor, supporting, goblet and basal cells. The receptor cells are of ciliated and microvillous type. Both ciliated and microvillous receptor cells are provided with olfactory knob. The dendrite of all the receptor cells bears many longitudinally arranged microtubules. Occurrence of the rod cell and its function is quite debatable. Specialized juctional complexes between the receptor and adjacent cells are clearly noted. The supporting cells are both ciliated and nonciliated. The ciliated supporting cells are responsible for water ventilation in the olfactory chamber as well as in the inter-lamellar spaces. This facilitates better perception of odours by the receptor cells. In addition to providing mechanical support to other cells, the nonciliated supporting cells also have a secretory function which is evident from the present study. The different stages of maturity of goblet cells are well documented. The presence of white cells in the olfactory epithelium is a very rare finding.  相似文献   

20.
The apical part of the olfactory epithelium in Myxine glutinosa was investigated by optical and electron microscopy. This part of the epithelium consists of supporting cells and two types of olfactory receptor cells, i.e., ciliated receptor cells and microvillous receptor cells. The olfactory cilia have a 9 + 0 pattern of the microtubules, occasionally with one pair of the doublets dislocated towards the center of the cilium. Giant cilia were observed. The supporting cells bear microvilli and are rich in tonofilaments. The supporting cells also have a secretory function, their secretion consisting mainly of acid mucopolysaccharides. An asymmetrical type of desmosome was found between the olfactory receptor cells and the supporting cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号