首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long noncoding RNAs (lncRNAs) have been identified to have increasingly important roles in tumorigenesis, and they may serve as novel biomarkers for cancer therapy. Recent studies have demonstrated that lncRNA NBR2 (neighbor of BRCA1 gene 2), a novel identified lncRNA, is decreased in several cancers; however, the role of NBR2 in the development of osteosarcoma has not been elucidated. In our study, we found that NBR2 expression was downregulated in osteosarcoma tissues, and osteosarcoma cases with lower NBR2 expression exhibited a shorter overall survival time compared with those with higher NBR2 expression. NBR2 overexpression inhibited osteosarcoma cell proliferation, invasion, and migration but did not increase apoptosis. Furthermore, RNA-binding protein immunoprecipitation assays confirmed that NBR2 directly binds to Notch1 protein. Furthermore, overexpression of Notch1 in NBR2-overexpressing osteosarcoma cells reversed the effects of NBR2 on cell proliferation, invasion, migration, and epithelial-mesenchymal transition. The in vivo results showed that NBR2 overexpression inhibited tumor growth in nude mice that were inoculated with osteosarcoma cells. NBR2 overexpression also suppressed the messenger RNA (mRNA) expression of Notch1, N-cadherin, and vimentin and increased the mRNA expression of E-cadherin in the tumor tissues. These data indicated that NBR2 served as a tumor suppressor gene in osteosarcoma and inhibited osteosarcoma cell proliferation, invasion, and migration. The current study provides a novel insight and treatment strategy for osteosarcoma.  相似文献   

2.
Bladder cancer is the most common malignancy with high recurrence. Currently, the long noncoding RNAs (lncRNAs) have been suggested to play vital roles in the pathogenesis of bladder cancer. The present study investigated the role of lncRNA MIR503 host gene (MIR503HG) in the pathogenesis of bladder cancer by using both in vitro and in vivo functional assays. The expression of MIR503HG was downregulated in bladder cancer tissues and cell lines. Low expression of MIR503HG was associated with advanced tumor stage, advanced histological grade, and lymph node metastasis. Ectopic expression of MIR503HG inhibited cell proliferation, cell growth, cell invasion, and migration, and also promoted cell apoptosis and inhibited cell cycle progression in SW780 cells. In parallel, T24 cells were used for loss-of-function studies. Knockdown of MIR503HG promoted the cancer cell proliferation and increased the migration and invasion abilities of T24 cells. In addition, knockdown of MIR503HG reduced the cell apoptotic rate in cancer cells and promoted cell cycle progression. Furthermore, MIR503HG overexpression decreased the epithelial-mesenchymal transition-related mRNA and protein levels of ZEB1, Snail, N-cadherin, and vimentin, with an increase in E-cadherin level. Consistently, knockdown of MIR503HG showed the opposite effects. In vivo xenograft, nude mice results showed that overexpression of MIR503HG suppressed the tumor growth and tumor metastasis. In conclusion, our results identified a novel lncRNA MIR503HG that exhibited significant antiproliferation, antimigration/invasion effects on bladder cancer cells both in vitro and in vivo, which may hold a therapeutic promise to treat bladder cancer.  相似文献   

3.
BackgroundSevoflurane (SEVO) inactivates the aggressiveness of hepatocellular carcinoma (HCC) cells by mediating microRNAs (miRNAs). Hence, we delved into the functional role of miR-148a-3p mediated by SEVO in HCC.MethodsLiver cells (L02) and HCC cells (HCCLM3 and Huh7) were exposed to SEVO to detect cell viability in HCC. HCCLM3 and Huh7 cells were treated with restored miR-148a-3p or depleted Rho-associated protein kinase 1 (ROCK1) to elucidate their roles in HCC cells' biological characteristics. HCCLM3 and Huh7 cells were treated with SEVO, and/or vectors that changed miR-148a-3p or ROCK1 expression to identify their combined functions in HCC cell progression. Tumor xenograft in nude mice was performed to determine growth ability of tumor. The target relationship between miR-148a-3p and ROCK1 was verified.ResultsSEVO inhibited proliferation, invasion and migration and enhanced apoptosis of HCCLM3 and Huh7 cells. MiR-148a-3p up-regulation or ROCK1 down-regulation inhibited HCCLM3 and Huh7 cell progression. ROCK1 was determined to be target gene of miR-148a-3p. Down-regulating miR-148a-3p or overexpressing ROCK1 mitigated cell aggressiveness inhibition caused by SEVO.ConclusionOur study elucidates that microRNA-148a-3p enhances the effects of sevoflurane on inhibiting proliferation, invasion and migration and enhancing apoptosis of HCC cells through suppression of ROCK1.  相似文献   

4.
5.
Breast cancer (BC) is the most prevalent malignant cancer in the world, is the leading cause of cancer-related death female. Recently, there is accumulating evidence that long noncoding RNAs (lncRNAs) might as an important role in the progression of BC. (epithelial-mesenchymal transition (EMT) is considered to play a vital role in tumor cells migration and invasion. Nevertheless, the entire biological mechanisms and functions of lncRNAs in tumor migration, invasion, and EMT remain uncertain. In the present research, we observed that the expression of lncRNA AC073284.4 was downregulated in BC paclitaxel-resistant (PR) cells (MCF-7/PR) and tissues. Bioinformatics analysis predicted that miR-18b-5p was a direct target of AC073284.4, which has been validated by dual-luciferase reporter gene assay. We further proved that AC073284.4 could directly bind to miR-18b-5p and relieve the suppression for dedicator of cytokinesis protein 4 (DOCK4). Furthermore, the underlying functional experiments demonstrated that AC073284.4 might sponge miR-18b-5p to attenuate the invasion, metastasis, and EMT of BC cell through upregulating DOCK4 expression. In summary, AC073284.4 might serve as a competing endogenous RNA (ceRNA) in BC progression via modulating miR-18b-5p/DOCK4 axis, which weakens EMT and migration of BC. These results suggesting that AC073284.4 might function as a potential novel diagnostic biomarker in the progression of BC.  相似文献   

6.
7.
5''-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway and has been reported to suppress tumorigenesis. The MTAP gene is located at 9p21, a chromosome region often deleted in breast cancer (BC). However, the clinical and biological significance of MTAP in BC is still unclear. Here, we reported that MTAP was frequently downregulated in 41% (35/85) of primary BCs and 89% (8/9) of BC cell lines. Low expression of MTAP was significantly correlated with a poor survival of BC patients (P=0.0334). Functional studies showed that MTAP was able to suppress both in vitro and in vivo tumorigenic ability of BC cells, including migration, invasion, angiogenesis, tumor growth and metastasis in nude mice with orthotopic xenograft tumor of BC. Mechanistically, we found that downregulation of MTAP could increase the polyamine levels by activating ornithine decarboxylase (ODC). By treating the MTAP-repressing BC cells with specific ODC inhibitor Difluoromethylornithine (DFMO) or treating the MTAP-overexpressing BC cells with additional putrescine, metastasis-promoting or -suppressing phenotype of these MTAP-manipulated cells was significantly reversed, respectively. Taken together, our data suggested that MTAP has a critical metastasis-suppressive role by tightly regulating ODC activity in BC cells, which may serve as a prominent novel therapeutic target for advanced breast cancer treatment.  相似文献   

8.
Laryngocarcinoma is the most common head and neck cancer and has a high incidence and mortality, causing about 83 000 deaths per year worldwide. Our research aimed to investigate the possible role of long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in laryngocarcinoma development. The messenger RNA (mRNA) levels of TUG1 in tumor tissues and control (plasma) samples of laryngocarcinoma patients as well as in laryngocarcinoma cells were detected. The influences of TUG1 suppression on cell biological processes (viability, apoptosis, migration, and invasion) and cytoskeleton rearrangement in laryngocarcinoma cells were tested. Moreover, we investigated the regulatory interaction between TUG1 and miR-145-5p, and identified the target gene of miR-145-5p. The association between TUG1 and the protein expressions of RhoA/rho associated coiled-coil containing protein kinase (ROCK)/matrix metalloproteinases (MMPs) pathway-associated factors were detected. TUG1 was found to be highly expressed in tumor tissues and plasma samples of laryngocarcinoma patients as well as in laryngocarcinoma cells. Suppression of TUG1 decreased laryngocarcinoma cell viability, increased apoptosis, and suppression migration, invasion, and cytoskeleton rearrangement. Moreover, TUG1 negatively regulated miR-145-5p. TUG1 regulated tumor growth (viability and apoptosis) and metastasis through miR-145-5p. Furthermore, ROCK1 was targeted by miR-145-5p, and miR-145-5p/ROCK1 partner was involved in the process of tumor growth and metastasis. Finally, we found that TUG1 functioned on laryngocarcinoma by activating RhoA/ROCK/MMPs pathway. Our study reveals that lncRNA TUG1 is upregulated in laryngocarcinoma and may be involved in the process of laryngocarcinoma through miR-145-5p downregulation and activating the RhoA/ROCK/MMPs signals.  相似文献   

9.
Long noncoding RNA (lncRNA) PTCSC3 (hereafter PTCSC3 is used to represent lncRNA PTCSC3) inhibits glioma and thyroid cancer, indicating its potential tumor suppression function in other types of cancers. We explored the potential involvement of PTCSC3 in triple-negative breast cancer (TNBC). In the current study, we found that PTCSC3 was downregulated in tumor tissues of patients with TNBC. PTCSC3 expression was positively correlated with plasma levels of PTCSC3. LncRNA H19 was upregulated and was inversely correlated with PTCSC3 in tumor tissues. PTCSC3 overexpression led to downregulated H19 in TNBC cells, while H19 overexpression did not affect PTCSC3 expression. PTCSC3 inhibited and H19 promoted proliferation of TNBC cells. H19 overexpression attenuated the effects of PTCSC3 overexpression. Cancer cell migration and invasion were not significantly affected by PTCSC3 overexpression. Therefore, lncRNA PTCSC3 inhibits TNBC cell proliferation by downregulating lncRNA H19.  相似文献   

10.
Long noncoding RNAs (lncRNAs) have been recognized as cancer-associated biological molecules, favoring hepatocellular carcinoma (HCC) progression. This study was conducted to elucidate the effects lncRNA lymphoid enhancer-binding Factor 1 antisense RNA (LEF1-AS1) on the pathological development of HCC, along with the crosstalk involving microRNA-136-5p (miR-136-5p) and with-no-K (lysine) kinase 1 (WNK1). The study recruited primary HCC tissues and their corresponding nonneoplastic liver tissues. The gain- and loss-of-function studies were performed in HCC cells HuH-7 and tumor xenografts in nude mice. The dual luciferase reporter gene assay system, RNA pull-down, and radioimmunoprecipitation assays were applied to detect their interactions among lncRNA LEF1-AS1, miR-136-5p, and WNK1. 5-Ethynyl-2′-deoxyuridine staining, scratch test, Transwell assays, and in vitro tube formation assays were conducted to examine HCC cell proliferation, migration, and invasion and HUVEC angiogenesis. HCC tissues and cells contained high lncRNA LEF1-AS1 expression. LncRNA LEF1-AS1 upregulation triggered markedly increased HCC cell proliferation, migration, and invasion and human umbilical vein endothelial cell angiogenesis. In vivo silencing lncRNA LEF1-AS1 resulted in reduced tumor cell vitality and matrix metalloproteinase-9 and the vascular endothelial growth factor expression. Additionally, the role of lncRNA LEF1-AS1 was found to be largely dependent on WNK1. Association of lncRNA LEF1-AS1 with WNK1 blocked the inhibitory effect of miR-136-5p on WNK1, which was confirmed by in vivo experiments. Altogether, our results revealed an important role of lncRNA LEF1-AS1 in regulating the HCC progression by regulating WNK1, providing a potential biomarker for the therapeutic modalities regarding HCC.  相似文献   

11.
Cui  Su  Yang  Chun-Lu  Chen  Dong-Yi 《Biochemical genetics》2021,59(6):1441-1456

The aim of the study is to investigate how lncRNA EWSAT1 regulates the tumorigenesis of non-small cell lung cancer (NSCLC) as a ceRNA by modulating miR-330-5p/ITGA5 axis. qRT-PCR was conducted to evaluate the expression of EWSAT1 in NSCLC tissue. Then, A549 cells were selected and divided into Blank shScramble, shEWSAT1, miR-330-5p inhibitor, shEWSAT1?+?miR-330-5p inhibitor, and siITGA5 and miR-330-5p inhibitor?+?siITGA5 groups. Besides, a series of in-vitro experiments were carried out to determine the changes in cell proliferation, apoptosis, invasion, and migration in each group. In addition, xenograft models were also constructed on nude mice to detect the tumor volume and weight, and the expression of Ki67 and apoptosis in xenograft tumor were evaluated. In NSCLC tissue and cell, EWSAT1 was upregulated significantly, demonstrating a correlation with tumor diameter, differentiation, lymph node metastasis, and TNM stage. Dual luciferase reporter gene assay confirmed targeting relationships among miR-330-5p, EWSAT1, and ITGA5. In comparison with the Blank group, the number of cell clones in the shEWSAT1 group and siITGA5 decreased, with declined invasion and migration but increased apoptotic rate. Meanwhile, ITGA5, MMP-2, and MMP-9 were downregulated with upregulated cleaved caspase-3. However, the changes above were totally reversed in the miR-330-5p inhibitor group, and miR-330-5p inhibitor transfection abolished the effect of shEWSAT1. In addition, subcutaneous xenotransplantation showed that the tumor growth in shEWSAT1 group retarded significantly, with downregulation of Ki67 and increase apoptotic rate. Silencing EWSAT1 could inhibit the expression of ITGA5 via upregulating miR-330-5p, thus, resulting in the inhibition of NSCLC cell growth.

  相似文献   

12.
The dysregulation of long noncoding (lncRNA) UCA1 may play an important role in tumor progression. However, the function in gliomas is unclear. Therefore, this experiment was designed to explore the pathogenesis of glioma based on lncRNA UCA1. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of lncRNA UCA1, miR-135a, and HOXD9 in gliomas tissues. The effect of lncRNA UCA1 and miR-135a on tumor cell proliferation and migration invasiveness was examined by CCK-8 and transwell assays. Target gene prediction and screening, luciferase reporter assay were used to verify downstream target genes of lncRNA UCA1. Expression of E-cadherin, N-cadherin, vimentin, and HOXD9 was detected by RT-qPCR and Western blotting. The tumor changes in mice were detected by in vivo experiments in nude mice. lncRNA UCA1 was highly expressed in glioma tissues and cell lines. lncRNA UCA1 expression was associated with significantly poor overall survival in gliomas. Moreover, lncRNA UCA1 significantly enhanced cell proliferation and migration, and promoted the occurrence of EMT. In addition, lncRNA UCA1 promoted the development of EMT by positively regulating HOXD9 expression as a miR-135a sponge. In vivo experiments indicated that UCA1 exerted its biological functions by modulating miR-135a and HOXD9. In conclusion, lncRNA UCA1 can induce the activation of HOXD9 by inhibiting the expression of miR-135a and promote the occurrence of EMT in glioma.  相似文献   

13.
Emerging evidence highlights the key regulatory roles of long noncoding RNAs (lncRNAs) in the initiation and progression of numerous malignancies. The lncRNA identified as differentiation antagonizing nonprotein coding RNA (DANCR) is a novel lncRNA widely involved in the development of multiple human cancers. However, the function of DANCR and its potential molecular mechanism in cervical cancer remain unclear. In this study, we discovered that DANCR was significantly elevated in cervical cancer tissues and cells, and was closely correlated with poor prognosis of cervical cancer patients. In addition, knockdown of DANCR inhibited proliferation, migration, and invasion of cervical cancer cells in vitro, indicating that DANCR functioned as an oncogene in cervical cancer. Moreover, we verified that DANCR could directly bind to miR-335-5p, isolating miR-335-5p from its target gene Rho-associated coiled-coil containing protein kinase 1 (ROCK1). Functional analysis showed that DANCR regulated ROCK1 expression by competitively binding to miR-335-5p. Further cellular behavioral experiments revealed that miR-335-5p mimics and ROCK1 knockdown reversed the effects of upregulated DANCR on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cervical cancer cells by rescue assays. In summary, this study demonstrated that DANCR promoted cervical cancer progression by functioning as a competing endogenous RNA (ceRNA) to regulate ROCK1 expression via sponging miR-335-5p, suggesting a novel potential therapeutic target for cervical cancer.  相似文献   

14.
We aim to uncover the methylation of microRNA-7 (miR-7) promoter in osteosarcoma (OS) and the inner mechanism of miR-7 on the progression of OS cells. Expression and methylation state of miR-7 in OS tissues and cells were detected. With the aim to unearth the ability of miR-7 in OS, the proliferation, cell cycle progression, apoptosis, invasion, migration of OS cells, and the tumor growth in nude mice were determined. Meanwhile, IGF1R expression was detected and the association between miR-7 and IGF1R was confirmed. The proliferating cell nuclear antigen (PCNA) expression was tested by immunohistochemical staining, and the lung metastasis was observed by H&E staining. miR-7 expression was decreased and methylation state of miR-7 was increased in OS tissues and cells. Upregulated miR-7 inhibited proliferation, cell cycle progression, invasion,and migration, while inducing apoptosis of OS cells and the tumor growth as well as PCNA expression in nude mice. Expression of IGF1R was downregulated in OS cells with overexpression of miR-7. Experiments verified the binding site between miR-7 and IGF1R. Our study demonstrates that abnormal methylation of miR-7 contributes to decreased miR-7 in OS. In addition, miR-7 represses the initiation and progression of OS cells through the inhibition of IGF1R.  相似文献   

15.
LncRNA RP11-363E7.4 has been shown to be downregulated in gastric cancer (GC), while the effect of lncRNA RP11-363E7.4 on GC and its potential molecular mechanisms is unclear. The purpose of this study was to explore the functional role and underlying molecular mechanisms of lncRNA RP11-363E7.4 involved in GC progress.To address the question, quantitative real-time PCR assay was performed to confirm lncRNA RP11-363E7.4 expression levels in GC tissues and cell lines. Cell proliferation, apoptosis, migration and invasion were estimated using Cell Counting Kit-8, colony formation, scratch wound healing and Transwell assays. Potential molecular mechanisms were evaluated using western blot assay. The results showed that lncRNA RP11-363E7.4 was significantly downregulated in GC cell lines and 82 paired tissues. The correlation between expression and clinicopathological features indicated that low expression of lncRNA RP11-363E7.4 was associated with T stage (P = .010). Functional experiments showed that overexpression of lncRNA RP11-363E7.4 prevented proliferation, migration, and invasion and induced apoptosis of GC cells. Western blot assay revealed that lncRNA RP11-363E7.4 functioned via the p53, Bax/Bcl-2, β-catenin pathway. In summary, this study revealed that lncRNA RP11-363E7.4 functioned as a tumour suppressor by inhibiting proliferation, migration, and invasion and inducing apoptosis of GC cells. Significance of the study :LncRNA RP11-363E7.4 has been shown to be downregulated in GC, while the effect of lncRNA RP11-363E7.4 on GC and its potential molecular mechanism is unclear. We revealed that lncRNA RP11-363E7.4 functioned as a tumour suppressor by inhibiting proliferation, migration, and invasion and inducing apoptosis of GC cells. LncRNA RP11-363E7.4 might become an attractive diagnostic and prognostic biomarker of GC and a promising target for GC treatment.  相似文献   

16.
17.
Papillary thyroidal carcinoma (PTC) is a common endocrine cancer that plagues people across the world. The potential roles of long non-coding RNAs (lncRNAs) in PTC have gained increasing attention. In this study, we aimed to explore whether lncRNA ROR affects the progression of PTC, with the involvement of tescalcin (TESC)/aldehyde dehydrogenase isoform 1A1 (ALDH1A1)/βIII-tubulin (TUBB3)/tensin homolog (PTEN) axis. PTC tumor and adjacent tissues were obtained, followed by measurement of lncRNA ROR and TESC, ALDH1A1, and TUBB3 expression. Interactions among lncRNA ROR, TESC, ALDH1A1, TUBB3, and PTEN were evaluated by ChIP assay, RT-qPCR, or western blot analysis. After ectopic expression and depletion experiments in PTC cells, MTT and colony formation assay, Transwell assay, and flow cytometry were performed to detect cell viability and colony formation, cell migration and invasion, and apoptosis, respectively. In addition, xenograft in nude mice was performed to test the effects of lncRNA ROR and PTEN on tumor growth in PTC in vivo. LncRNA ROR, TESC, ALDH1A1, and TUBB3 were highly expressed in PTC tissues and cells. Overexpression of lncRNA ROR activated TESC by inhibiting the G9a recruitment on the promoter of TESC and histone H3-lysine 9me methylation. Moreover, TESC upregulated ALDH1A1 expression to increase TUBB3 expression, which then reduced PTEN expression. Overexpression of lncRNA ROR, TESC, ALDH1A1 or TUBB3 and silencing of PTEN promoted PTC cell viability, colony formation, migration, and invasion while suppressing apoptosis. Moreover, overexpression of lncRNA ROR increased tumor growth by inhibiting PTEN in vivo. Taken together, the current study demonstrated that lncRNA ROR mediated TESC/ALDH1A1/TUBB3/PTEN axis, thereby facilitating the development of PTC.Subject terms: Gynaecological cancer, Cell biology  相似文献   

18.
外泌体是由细胞分泌的直径为30~150 nm的小囊泡,含有丰富的mRNA、microRNA和长链非编码RNA(lncRNA)。目前,大多数外泌体研究都集中在mRNA和microRNA,而对lncRNA的生物学功能并不十分清楚。研究表明,肿瘤细胞外泌体 lncRNA H19在肿瘤细胞的增殖、迁移和侵袭中发挥了重要作用。本研究将筛选到的lncRNA H19高表达的肝癌细胞HCCLM3,分别收集其高表达lncRNA H19的外泌体和其下调lncRNA H19表达后的外泌体。然后,将收集到的外泌体分别添加到lncRNA H19低表达的肝癌细胞Hep3B和HepG2孵育液中。孵育24 h后,检测其对肿瘤细胞的增殖、迁移和侵袭能力的影响。结果显示,肝癌细胞HCCLM3可分泌大量的外泌体,且能被其他肿瘤细胞大量摄取;与下调lncRNA H19表达的外泌体相比,lncRNA H19高表达的外泌体能显著增强Hep3B和HepG2细胞的增殖、迁移和侵袭能力。而这一作用可通过激活PI3K/AKT/mTOR通路实现。上述结果表明,lncRNA H19高表达的肝癌细胞以外泌体方式,增强邻近肝癌细胞的增殖、迁移和侵袭能力,促进肝癌的发生与发展。  相似文献   

19.
Esophageal cancer related gene-4 (ECRG4) inhibits the malignant phenotype of oral squamous cell carcinoma. However, the molecular mechanisms remain to be explored. Using the tongue carcinoma cell line, TCA8113 as a cell model, we showed that forced expression of ECRG4 down-regulated the expression of the BC200 long non-coding RNA (lncRNA) and matrix metalloproteinases (MMP-9 and MMP-13). Restoration of BC200 lncRNA rescued ECRG4-mediated down-regulation of MMP-9 and -13. Furthermore, over-expression of Ecrg4 inhibited cell proliferation and migration, which was abolished by forced expression of BC200 lncRNA in TCA8113 cells. Our results indicate that ECRG4 inhibits the malignant phenotype of TCA8113 cells most likely through suppression of BC200 lncRNA/MMPs signaling pathway, rationalizing that BC200 lncRNA may be a potential target for oral squamous cell carcinoma (OSCC) therapy.  相似文献   

20.
The aim of this study is to investigate the influence of Lenti-EGFP-NeuroD-miR, RNAi lentiviral expression vector, on the expression level of NeuroD and migration, and invasion of PANC-1 cell line. PANC-1 cells were cultured and cotransfected with Lenti-EGFP-NeuroD-miR and Lenti-GFP. The infection rate of lentivirus was determined by fluorescence. The interfering effection by the expression of NeuroD mRNA in PANC-1 cells was analyzed by real-time PCR after transfected. Biological behavior of PANC-1 cells transinfected was observed, and the migration and invasion were studied by transwell assay. Intrapancreatic allografts model in nude mice was established to observe the effects of NeuroD on tumorigenesis, tumor growth, and invasion in vivo. The expression of NeuroD mRNA decreased significantly after RNAi lentivirus transinfecting PANC-1 cell. The cell’s migration and invasion ability decreased obviously as soon as down regulate of NeuroD in PANC-1 cells. Comparing with control group, the tumors were smaller in size and the invasiveness was inhibited after 8 weeks intrapancreatic allografts in nude mice. Lenti-EGFP-NeuroD-miR transfected into PANC-1 cells shows a stable, effective, and especial blocking expression of NeuroD in mRNA level. The RNAi of lentiviral vector target NeuroD can reduce the migration and invasion abilities of PANC-1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号