首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heart failure has become one of the top causes of death worldwide. It is increasing evidence that lncRNAs play important roles in the pathology processes of multiple cardiovascular diseases. Additionally, lncRNAs can function as ceRNAs by sponging miRNAs to affect the expression level of mRNAs, implicating in numerous biological processes. However, the functional roles and regulatory mechanisms of lncRNAs in heart failure are still unclear. In our study, we constructed a heart failure‐related lncRNA‐mRNA network by integrating probe re‐annotation pipeline and miRNA‐target interactions. Firstly, some lncRNAs that had the central topological features were found in the heart failure‐related lncRNA‐mRNA network. Then, the lncRNA‐associated functional modules were identified from the network, using bidirectional hierarchical clustering. Some lncRNAs that involved in modules were demonstrated to be enriched in many heart failure‐related pathways. To investigate the role of lncRNA‐associated ceRNA crosstalks in certain disease or physiological status, we further identified the lncRNA‐associated dysregulated ceRNA interactions. And we also performed a random walk algorithm to identify more heart failure‐related lncRNAs. All these lncRNAs were verified to show a strong diagnosis power for heart failure. These results will help us to understand the mechanism of lncRNAs in heart failure and provide novel lncRNAs as candidate diagnostic biomarkers or potential therapeutic targets.  相似文献   

2.
3.
Glioblastoma multiforme (GBM) is a very serious mortality of central nervous system cancer. The microarray data from GSE2223 , GSE4058 , GSE4290 , GSE13276 , GSE68848 and GSE70231 (389 GBM tumour and 67 normal tissues) and the RNA‐seq data from TCGA‐GBM dataset (169 GBM and five normal samples) were chosen to find differentially expressed genes (DEGs). RRA (Robust rank aggregation) method was used to integrate seven datasets and calculate 133 DEGs (82 up‐regulated and 51 down‐regulated genes). Subsequently, through the PPI (protein‐protein interaction) network and MCODE/ cytoHubba methods, we finally filtered out ten hub genes, including FOXM1, CDK4, TOP2A, RRM2, MYBL2, MCM2, CDC20, CCNB2, MYC and EZH2, from the whole network. Functional enrichment analyses of DEGs were conducted to show that these hub genes were enriched in various cancer‐related functions and pathways significantly. We also selected CCNB2, CDC20 and MYBL2 as core biomarkers, and further validated them in CGGA, HPA and CCLE database, suggesting that these three core hub genes may be involved in the origin of GBM. All these potential biomarkers for GBM might be helpful for illustrating the important role of molecular mechanisms of tumorigenesis in the diagnosis, prognosis and targeted therapy of GBM cancer.  相似文献   

4.
Lymph node metastasis is one of the most important independent risk factors that can negatively affect the prognosis of prostate cancer (PCa); however, the exact mechanisms have not been well studied. This study aims to better understand the underlying mechanism of lymph node metastasis in PCa by bioinformatics analysis. We analysed a total of 367 PCa cases from the cancer genome atlas database and performed weighted gene co‐expression network analysis to explore some modules related to lymph node metastasis. Gene Ontology analysis and pathway enrichment analysis were conducted for functional annotation, and a protein‐protein interaction network was built. Samples from the International Cancer Genomics Consortium database were used as a validation set. The turquoise module showed the most relevance with lymph node metastasis. Functional annotation showed that biological processes and pathways were mainly related to activation of the processes of cell cycle and mitosis. Four hub genes were selected: CKAP2L, CDCA8, ERCC6L and ARPC1A. Further validation showed that the four hub genes well‐distinguished tumour and normal tissues, and they were good biomarkers for lymph node metastasis of PCa. In conclusion, the identified hub genes facilitate our knowledge of the underlying molecular mechanism for lymph node metastasis of PCa.  相似文献   

5.
6.
A mounting body of evidence has suggested that long noncoding RNAs (lncRNAs) play critical roles in human diseases by acting as competing endogenous RNAs (ceRNAs). However, the functions and ceRNA mechanisms of lncRNAs in atrial fibrillation (AF) remain to date unclear. In this study, we constructed an AF-related lncRNA-mRNA network (AFLMN) based on ceRNA theory, by integrating probe reannotation pipeline and microRNA (miRNA)-target regulatory interactions. Two lncRNAs with central topological properties in the AFLMN were first obtained. By using bidirectional hierarchical clustering, we identified two modules containing four lncRNAs, which were significantly enriched in many known pathways of AF. To elucidate the ceRNA interactions in certain disease or normal condition, the dysregulated lncRNA-mRNA crosstalks in AF were further analyzed, and six hub lncRNAs were obtained from the network. Furthermore, random walk analysis of the AFLMN suggested that lncRNA RP11-296O14.3 may function importantly in the pathological process of AF. All these eight lncRNAs that were identified from previous steps (RP11-363E7.4, GAS5, RP11-410L14.2, HAGLR, RP11-421L21.3, RP11-111K18.2, HOTAIRM1, and RP11-296O14.3) exhibited a strong diagnostic power for AF. The results of our study provide new insights into the functional roles and regulatory mechanisms of lncRNAs in AF, and facilitate the discovery of novel diagnostic biomarkers or therapeutic targets.  相似文献   

7.
Abstract

Atherosclerosis is a life-threatening disease and a major cause of mortalities worldwide. While many of the atherosclerotic sequelae are reflected as microvascular effects in the eye, the molecular mechanisms of their development is not yet known. In this study, we employed a systems biology approach to unveil the most significant events and key molecular mediators of ophthalmic sequelae caused by atherosclerosis. Literature mining was used to identify the proteins involved in both atherosclerosis and ophthalmic diseases. A protein–protein interaction (PPI) network was prepared using the literature-mined seed nodes. Network topological analysis was carried out using Cytoscape, while network nodes were annotated using database for annotation, visualization and integrated discovery in order to identify the most enriched pathways and processes. Network analysis revealed that mitogen-activated protein kinase 1 (MAPK1) and protein kinase C occur with highest betweenness centrality, degree and closeness centrality, thus reflecting their functional importance to the network. Our analysis shows that atherosclerosis-associated ophthalmic complications are caused by the convergence of neurotrophin signaling pathways, multiple immune response pathways and focal adhesion pathway on the MAPK signaling pathway. The PPI network shares features with vasoregression, a process underlying multiple vascular eye diseases. Our study presents a first clear and composite picture of the components and crosstalk of the main pathways of atherosclerosis-induced ocular diseases. The hub bottleneck nodes highlight the presence of molecules important for mediating the ophthalmic complications of atherosclerosis and contain five established drug targets for future therapeutic modulation efforts.  相似文献   

8.
9.
The architecture of the network of protein–protein physical interactions in Saccharomyces cerevisiae is exposed through the combination of two complementary theoretical network measures, betweenness centrality and ‘Q-modularity’. The yeast interactome is characterized by well-defined topological modules connected via a small number of inter-module protein interactions. Should such topological inter-module connections turn out to constitute a form of functional coordination between the modules, we speculate that this coordination is occurring typically in a pairwise fashion, rather than by way of high-degree hub proteins responsible for coordinating multiple modules. The unique non-hub-centric hierarchical organization of the interactome is not reproduced by gene duplication-and-divergence stochastic growth models that disregard global selective pressures.  相似文献   

10.
Recently, computational approaches integrating copy number aberrations (CNAs) and gene expression (GE) have been extensively studied to identify cancer-related genes and pathways. In this work, we integrate these two data sets with protein-protein interaction (PPI) information to find cancer-related functional modules. To integrate CNA and GE data, we first built a gene-gene relationship network from a set of seed genes by enumerating all types of pairwise correlations, e.g. GE-GE, CNA-GE, and CNA-CNA, over multiple patients. Next, we propose a voting-based cancer module identification algorithm by combining topological and data-driven properties (VToD algorithm) by using the gene-gene relationship network as a source of data-driven information, and the PPI data as topological information. We applied the VToD algorithm to 266 glioblastoma multiforme (GBM) and 96 ovarian carcinoma (OVC) samples that have both expression and copy number measurements, and identified 22 GBM modules and 23 OVC modules. Among 22 GBM modules, 15, 12, and 20 modules were significantly enriched with cancer-related KEGG, BioCarta pathways, and GO terms, respectively. Among 23 OVC modules, 19, 18, and 23 modules were significantly enriched with cancer-related KEGG, BioCarta pathways, and GO terms, respectively. Similarly, we also observed that 9 and 2 GBM modules and 15 and 18 OVC modules were enriched with cancer gene census (CGC) and specific cancer driver genes, respectively. Our proposed module-detection algorithm significantly outperformed other existing methods in terms of both functional and cancer gene set enrichments. Most of the cancer-related pathways from both cancer data sets found in our algorithm contained more than two types of gene-gene relationships, showing strong positive correlations between the number of different types of relationship and CGC enrichment -values (0.64 for GBM and 0.49 for OVC). This study suggests that identified modules containing both expression changes and CNAs can explain cancer-related activities with greater insights.  相似文献   

11.
Recent studies have shown that pyroptosis, an inflammatory form of cell death, has a dual role in tumorigenesis and tumour progression and affects the prognosis of patients; however, the role of pyroptosis in glioblastoma (GBM) is still unclear. In this study, based on GBM patients'' data from two independent cohorts, we performed a comprehensive analysis of the expression and prognostic value of 33 pyroptosis‐associated genes (PAGs) in GBM, as well as their role in the tumour immune microenvironment (TIME) of GBM. We identified 29 PAGs that were differentially expressed between GBM and normal brain tissue, 18 of which were upregulated in GBM tissue. Most of the 33 PAGs were strongly correlated with the levels of immune cell infiltration. Based on the 33 PAGs, the GBM samples can be divided into two clusters (C1‐C2), with C1 having a ‘hot’ but immunosuppressive TIME and C2 having a ‘cold’ TIME, suggesting different immunotherapeutic responses in the two clusters. In addition, we identified four PAGs that were strongly associated with GBM prognosis and constructed a risk model based on these four PAGs. This risk model is an independent prognostic factor for GBM patients, and there is a different immune status between high‐ and low‐risk groups. In conclusion, this study demonstrates that pyroptosis is closely associated with the prognosis and TIME of GBM and provides an important basis for further studies on the relationship between pyroptosis and GBM.  相似文献   

12.
Hepatocellular carcinoma (HCC) is the most common subtype in liver cancer whose prognosis is affected by malignant progression associated with complex gene interactions. However, there is currently no available biomarkers associated with HCC progression in clinical application. In our study, RNA sequencing expression data of 50 normal samples and 374 tumor samples was analyzed and 9225 differentially expressed genes were screened. Weighted gene coexpression network analysis was then conducted and the blue module we were interested was identified by calculating the correlations between 17 gene modules and clinical features. In the blue module, the calculation of topological overlap was applied to select the top 30 genes and these 30 genes were divided into the green group (11 genes) and the yellow group (19 genes) through searching whether these genes were validated by in vitro or in vivo experiments. The genes in the green group which had never been validated by any experiments were recognized as hub genes. These hub genes were subsequently validated by a new data set GSE76427 and KM Plotter Online Tool, and the results indicated that 10 genes (FBXO43, ARHGEF39, MXD3, VIPR1, DNASE1L3, PHLDA1, CSRNP1, ADR2B, C1RL, and CDC37L1) could act as prognosis and progression biomarkers of HCC. In summary, 10 genes who have never been mentioned in HCC were identified to be associated with malignant progression and prognosis of patients. These findings may contribute to the improvement of the therapeutic decision, risk stratification, and prognosis prediction for HCC patients.  相似文献   

13.
Protein interaction networks are known to exhibit remarkable structures: scale-free and small-world and modular structures. To explain the evolutionary processes of protein interaction networks possessing scale-free and small-world structures, preferential attachment and duplication-divergence models have been proposed as mathematical models. Protein interaction networks are also known to exhibit another remarkable structural characteristic, modular structure. How the protein interaction networks became to exhibit modularity in their evolution? Here, we propose a hypothesis of modularity in the evolution of yeast protein interaction network based on molecular evolutionary evidence. We assigned yeast proteins into six evolutionary ages by constructing a phylogenetic profile. We found that all the almost half of hub proteins are evolutionarily new. Examining the evolutionary processes of protein complexes, functional modules and topological modules, we also found that member proteins of these modules tend to appear in one or two evolutionary ages. Moreover, proteins in protein complexes and topological modules show significantly low evolutionary rates than those not in these modules. Our results suggest a hypothesis of modularity in the evolution of yeast protein interaction network as systems evolution.  相似文献   

14.
Recent functional magnetic resonance imaging (fMRI) studies on autism spectrum condition (ASC) have identified dysfunctions in specific brain networks involved in social and non-social cognition that persist into adulthood. Although increasing numbers of fMRI studies have revealed atypical functional connectivity in the adult ASC brain, such functional alterations at the network level have not yet been fully characterized within the recently developed graph-theoretical framework. Here, we applied a graph-theoretical analysis to resting-state fMRI data acquired from 46 adults with ASC and 46 age- and gender-matched controls, to investigate the topological properties and organization of autistic brain network. Analyses of global metrics revealed that, relative to the controls, participants with ASC exhibited significant decreases in clustering coefficient and characteristic path length, indicating a shift towards randomized organization. Furthermore, analyses of local metrics revealed a significantly altered organization of the hub nodes in ASC, as shown by analyses of hub disruption indices using multiple local metrics and by a loss of “hubness” in several nodes (e.g., the bilateral superior temporal sulcus, right dorsolateral prefrontal cortex, and precuneus) that are critical for social and non-social cognitive functions. In particular, local metrics of the anterior cingulate cortex consistently showed significant negative correlations with the Autism-Spectrum Quotient score. Our results demonstrate altered patterns of global and local topological properties that may underlie impaired social and non-social cognition in ASC.  相似文献   

15.
Accumulating evidence indicates that Checkpoint kinase 1 (CHEK1) plays an essential role in tumor cells and that it could induce cell proliferation and could be related to prognosis in multiple types of cancer. However, the biological role and molecular mechanism of CHEK1 in GBM still remain unclear. In this study, we identified that CHEK1 expression was enriched in glioblastoma (GBM) tumors and was functionally required for tumor proliferation and that its expression was associated to poor prognosis in GBM patients. Mechanically, CHEK1 induced radio resistance in GBM cells, and CHEK1 knockdown increased cell apoptosis when combined with radiotherapy via regulation of the DNA repair/recombination protein 54L (RAD54L) expression. Therapeutically, we found that CHEK1 inhibitor attenuated tumor growth both in vitro and in vivo. Collectively, CHEK1 promotes proliferation, induces radio resistance in GBM, and could become a potential therapeutic target for GBM.  相似文献   

16.
ObjectiveCKAP4 (Cytoskeleton Associated Protein 4) has been reported as an important regulator of carcinogenesis. A great deal of uncertainty still surrounds the possible molecular mechanism of CKAP4 involvement in GBM. We aimed to specifically elucidate the putative role of CKAP4 in the development of GBM.MethodsWe identified divergent proteomics landscapes of GBM and adjacent normal tissues using mass spectrometry-based label-free quantification. Bioinformatics analysis of differentially expressed proteins (DEPs) led to the identification of CKAP4 as a hub gene. Based on the Chinese Glioma Genome Atlas data, we characterized the elevated expression of CKAP4 in GBM and developed a prognostic model. The influence of CKAP4 on malignant behavior of GBM was detected in vitro and vivo, as well as its downstream target and signaling pathways.ResultsThe prognosis model displayed accuracy and reliability for the probability of survival of patients with gliomas. CKAP4 knockdown remarkably reduced the malignant potential of GBM cells, whereas its overexpression reversed these effects in GBM cells and xenograft mice. Moreover, we demonstrated that overexpression of CKAP4 leads to increased FOXM1 (Forkhead Box M1) expression in conjunction with an increased level of AKT and ERK phosphorylation. Inhibition of both pathways had synergistic effects, resulting in greater effectiveness of inhibition. CKAP4 could reverse the deregulation of FOXM1 triggered by inhibition of AKT and ERK signaling.ConclusionsThis is the first study to reveal a CKAP4-FOXM1 signaling cascade that contributes to the malignant phenotype of GBMs. The CKAP4-based prognostic model would facilitate individualized treatment decisions for glioma patients.  相似文献   

17.
18.
The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down study both identified and phenotypically characterized a set of important genes for the cell cycle in HeLa cells. Here, we combine a molecular interaction network analysis, based on physical and functional protein interactions, in conjunction with evolutionary information, to elucidate the common biological and topological properties of these key genes. Our results show that these genes tend to be conserved with their corresponding protein interactions across several species and are key constituents of the evolutionary conserved molecular interaction network. Moreover, a group of bistable network motifs is found to be conserved within this network, which are likely to influence the network stability and therefore the robustness of cellular functioning. They form a cluster, which displays functional homogeneity and is significantly enriched in genes phenotypically relevant for mitosis. Additional results reveal a relationship between specific cellular processes and the phenotypic outcomes induced by gene silencing. This study introduces new ideas regarding the relationship between genotype and phenotype in the context of the cell cycle. We show that the analysis of molecular interaction networks can result in the identification of genes relevant to cellular processes, which is a promising avenue for future research.  相似文献   

19.
20.
Glioblastoma multiforme (GBM), the most common and malignant type of glioma, is characterized by a poor prognosis and the lack of an effective treatment, which are due to a small sub-population of cells with stem-like properties, termed glioma stem cells (GSCs). The term “multiforme” describes the histological features of this tumor, that is, the cellular and morphological heterogeneity. At the molecular level multiple layers of alterations may reflect this heterogeneity providing together the driving force for tumor initiation and development. In order to decipher the common “signature” of the ancestral GSC population, we examined six already characterized GSC lines evaluating their cytogenomic and epigenomic profiles through a multilevel approach (conventional cytogenetic, FISH, aCGH, MeDIP-Chip and functional bioinformatic analysis). We found several canonical cytogenetic alterations associated with GBM and a common minimal deleted region (MDR) at 1p36.31, including CAMTA1 gene, a putative tumor suppressor gene, specific for the GSC population. Therefore, on one hand our data confirm a role of driver mutations for copy number alterations (CNAs) included in the GBM genomic-signature (gain of chromosome 7- EGFR gene, loss of chromosome 13- RB1 gene, loss of chromosome 10-PTEN gene); on the other, it is not obvious that the new identified CNAs are passenger mutations, as they may be necessary for tumor progression specific for the individual patient. Through our approach, we were able to demonstrate that not only individual genes into a pathway can be perturbed through multiple mechanisms and at different levels, but also that different combinations of perturbed genes can incapacitate functional modules within a cellular networks. Therefore, beyond the differences that can create apparent heterogeneity of alterations among GSC lines, there’s a sort of selective force acting on them in order to converge towards the impairment of cell development and differentiation processes. This new overview could have a huge importance in therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号