首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin resistant type 2 diabetes mellitus in the obese elderly has become a worldwide epidemic. While exercise can prevent the onset of diabetes in young subjects its role in older diabetic people is less clear. Exercise stimulates the release of the β(2)-agonist epinephrine more in the young. Although epinephrine and β(2)-agonist drugs cause acute insulin resistance, their chronic effect on insulin sensitivity is unclear. We fed C57BL/6 mice a high fat diet to induce diabetes. These overweight animals became very insulin resistant. Exhaustive treadmill exercise 5 days a week for 8 weeks had no effect on their diabetes, nor did the β(2)-blocking drug ICI 118551. In contrast, exercise combined with the β(2)-agonist salbutamol (albuterol) had a beneficial effect on both glucose tolerance and insulin sensitivity after 4 and 8 weeks of exercise. The effect was durable and persisted 5 weeks after exercise and β(2)-agonist had stopped. To test whether β(2)-agonist alone was effective, the animals that had received β(2)-blockade were then given β(2)-agonist. Their response to a glucose challenge improved but their response to insulin was not significantly altered. The β(2)-agonists are commonly used to treat asthma and asthmatics have an increased incidence of obesity and type 2 diabetes. Although β(2)-agonists cause acute hyperglycemia, chronic treatment improves insulin sensitivity, probably by improving muscle glucose uptake.  相似文献   

2.
3.
Osteoblasts participate in bone formation,bone mineralization,osteoclast differentiation and many pathological processes.To study the function of genes in osteoblasts using Cre-LoxP system,we generated a mouse line expressing the Cre recombinase under the control of the rat Collagenlal (Coilal) promoter(Coilatl-Cre).Two founders were identified by genomic PCR from 16 offsprings.and the integration efficiency is 12.5%.In order tO determine the tissue distribution and the activity of Cre rccombinase in the transgenic mice,the Collal-Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4co/co).Multiple tissue PCR of Collal-Cre;Smad4co/ mice revealed the restricted Cre activity in bone tissues containing osteoblasts and tendon.LacZ staining in the Coilal-Cre;ROSA26 double transgenic mice revealed that the Cre recombinase began to express in the osteoblasts of calvaria at E14.5.Cre activity was observed in the osteoblasts and osteocytes of P10 double transgenic mice.All these data indicated that the Collal-Cre transgenic mice could Serve as a valuabletool for osteoblast lineage analysis and conditional gene knockout in osteoblasts.  相似文献   

4.
Several species of the alga Dunaliella contain high levels of β-carotene. Low dietary β-carotene intake is associated with type 2 diabetes. Dunaliella contains high levels of all-trans and 9-cis isomers of β-carotene and is the best known naturally occurring nutritional source of 9-cis β-carotene. Since vitamin A has been suggested to play a role in glucose and lipid metabolism, we aimed to study the effect of Dunaliella supplementation on diabetes in mice. Ten diabetic db/db mice were fed chow diet fortified with 8 % 9-cis-rich Dunaliella powder. Ten db/db and heterozygous db/+ mice each served as controls and were fed chow diet alone. The control db/db mice developed severe hyperglycemia with fasting glucose levels reaching 400 mg dL?1. Dunaliella significantly inhibited the elevation of plasma glucose (p?=?0.007). The area under the curve of the glucose tolerance test was 24 % lower in Dunaliella-treated mice than in the control db/db mice. Triglyceride elevation was significantly lower in the Dunaliella group than in the db/db group (p?=?0.007). The mRNA levels of several pro-inflammatory genes in adipose tissue, including monocyte chemotactic protein-1, intercellular adhesion molecule, vascular adhesion molecule-1, receptor-associated protein factor 6, and p-selectin, were elevated in the db/db group as compared to the db/+, whereas their levels were significantly lower in the Dunaliella-treated group. These results suggest that 9-cis β-carotene-rich Dunaliella may inhibit diabetes in db/db mice by reducing inflammation in adipose tissue. This study also emphasizes the importance of β-carotene isomers in our diet.  相似文献   

5.
Yuan G  Wang C  Ma C  Chen N  Tian Q  Zhang T  Fu W 《PloS one》2012,7(3):e34004
The Wnt/β-catenin signaling pathway plays important roles in the progression of colon cancer. DACT1 has been identified as a modulator of Wnt signaling through its interaction with Dishevelled (Dvl), a central mediator of both the canonical and noncanonical Wnt pathways. However, the functions of DACT1 in the WNT/β-catenin signaling pathway remain unclear. Here, we present evidence that DACT1 is an important positive regulator in colon cancer through regulating the stability and sublocation of β-catenin. We have shown that DACT1 promotes cancer cell proliferation in vitro and tumor growth in vivo and enhances the migratory and invasive potential of colon cancer cells. Furthermore, the higher expression of DACT1 not only increases the nuclear and cytoplasmic fractions of β-catenin, but also increases its membrane-associated fraction. The overexpression of DACT1 leads to the increased accumulation of nonphosphorylated β-catenin in the cytoplasm and particularly in the nuclei. We have demonstrated that DACT1 interacts with GSK-3β and β-catenin. DACT1 stabilizes β-catenin via DACT1-induced effects on GSK-3β and directly interacts with β-catenin proteins. The level of phosphorylated GSK-3β at Ser9 is significantly increased following the elevated expression of DACT1. DACT1 mediates the subcellular localization of β-catenin via increasing the level of phosphorylated GSK-3β at Ser9 to inhibit the activity of GSK-3β. Taken together, our study identifies DACT1 as an important positive regulator in colon cancer and suggests a potential strategy for the therapeutic control of the β-catenin-dependent pathway.  相似文献   

6.
7.
8.
9.
MHC class I molecules play an important role in synaptic plasticity of the mammalian nervous system. Proteolytic complexes (proteasomes) produce oligopeptides that are presented on cell surfaces in complexes with MHC class I molecules and regulate many cellular processes beside this. The goal of the present work was to study peculiarities in functioning of proteasomes and associated signaling pathways along with evaluation of NeuN and gFAP expression in different sections of the brain in mice with knockout of β2-microglobulin, a constituent of MHC class I molecules. It was found that the frontal cortex and the brainstem, structures with different ratio of NeuN and gFAP expression, are characterized by opposite changes in the proteasome pool under constant total proteasome levels in B2m-knockout mice in comparison with those in control animals. ChTL-activity as well as expression of LMP7 immune subunit and PA28 regulator of proteasomes was elevated in the cortex of B2m-knockout mice, while these indicators were decreased in the brainstem. The concentrations of the signaling molecules nNOS and HSP70 in B2m-knockout mice were increased in the cortex, while being decreased in the brainstem, and this indicates the possibility of control of expression of the LMP7 subunit and the regulator PA28 by these molecules. Changes in the proteasome pool observed in striatum of B2m-knockout mice are similar to those observed in the brainstem. At the same time, the cerebellum is characterized by a specific pattern of proteasome functioning in comparison with that in all other brain structures. In cerebellum the expression of immune subunits LMP7 and LMP2 and the regulator PA28 was increased, while expression of regulator PA700 was decreased. Deficiency of NeuN and gFAP was revealed in most brain compartments of B2m-knockout mice. Thus, increased expression of the above-mentioned immune subunits and the proteasome regulator PA28 in the cortex and cerebellum may compensate disturbances revealed in the brain structures and the absence of MHC class I molecules. Apparently, this promotes production of peptides necessary for cell-to-cell interactions and maintains nervous system plasticity in B2m-knockout mice.  相似文献   

10.
The Parkinson''s disease (PD) gene, PARK6, encodes the PTEN-induced putative kinase 1 (PINK1) mitochondrial kinase, which provides protection against oxidative stress-induced apoptosis. Given the link between glucose metabolism, mitochondrial function and insulin secretion in β-cells, and the reported association of PD with type 2 diabetes, we investigated the response of PINK1-deficient β-cells to glucose stimuli to determine whether loss of PINK1 affected their function. We find that loss of PINK1 significantly impairs the ability of mouse pancreatic β-cells (MIN6 cells) and primary intact islets to take up glucose. This was accompanied by higher basal levels of intracellular calcium leading to increased basal levels of insulin secretion under low glucose conditions. Finally, we investigated the effect of PINK1 deficiency in vivo and find that PINK1 knockout mice have improved glucose tolerance. For the first time, these combined results demonstrate that loss of PINK1 function appears to disrupt glucose-sensing leading to enhanced insulin release, which is uncoupled from glucose uptake, and suggest a key role for PINK1 in β-cell function.  相似文献   

11.
The gene CTNNB1 encoding β-catenin is mutated in about 30% of hepatocellular carcinoma, generally often combined with other genetic alterations. In transgenic mice, it has been shown that activation of β-catenin in more than 70% of all hepatocytes causes immediate proliferation leading to hepatomegaly. In this study we established a novel mouse model where β-catenin is activated only in individual, dispersed hepatocytes. Hepatocyte-specific expression of activated point-mutated β-catenin (human β-cateninS33Y) was established using the Cre/loxP system. Expression of several downstream targets of β-catenin signaling such as glutamine synthetase and several cytochrome P450 isoforms was confirmed by immunostaining. Only a minor portion of hepatocytes expressed the β-cateninS33Y transgene, which were mainly positioned as dispersed individual cells within the normal liver parenchyma. The hepatocytes with activated β-catenin did not show increased proliferation and the mice did not develop hepatomegaly. In conclusion, activated β-catenin in single hepatocytes induces a gene expression pattern in hepatocytes which is similar to that of Ctnnb1-mutated mouse liver tumors, but is apparently not sufficient to induce increased cell proliferation. Therefore, onset of proliferation seems to require concomitant activation of β-catenin in clusters of hepatocytes, suggesting a role of cell–cell communication in this process.  相似文献   

12.
Background aimsThe authors aimed to observe β-cell dedifferentiation in type 2 diabetes mellitus (T2DM) and investigate the reversal effect of umbilical cord-derived mesenchymal stem cells (UC-MSCs) on early- and late-stage β-cell dedifferentiation.MethodsIn high-fat diet (HFD)/streptozotocin (STZ)-induced T2DM mice, the authors examined the predominant role of β-cell dedifferentiation over apoptosis in the development of T2DM and observed the reversion of β-cell dedifferentiation by UC-MSCs. Next, the authors used db/db mice to observe the progress of β-cell dedifferentiation from early to late stage, after which UC-MSC infusions of the same amount were performed in the early and late stages of dedifferentiation. Improvement in metabolic indices and restoration of β-cell dedifferentiation markers were examined.ResultsIn HFD/STZ-induced T2DM mice, the proportion of β-cell dedifferentiation was much greater than that of apoptosis, demonstrating that β-cell dedifferentiation was the predominant contributor to T2DM. UC-MSC infusions significantly improved glucose homeostasis and reversed β-cell dedifferentiation. In db/db mice, UC-MSC infusions in the early stage significantly improved glucose homeostasis and reversed β-cell dedifferentiation. In the late stage, UC-MSC infusions mildly improved glucose homeostasis and partially reversed β-cell dedifferentiation. Combining with other studies, the authors found that the reversal effect of UC-MSCs on β-cell dedifferentiation relied on the simultaneous relief of glucose and lipid metabolic disorders.ConclusionsUC-MSC therapy is a promising strategy for reversing β-cell dedifferentiation in T2DM, and the reversal effect is greater in the early stage than in the late stage of β-cell dedifferentiation.  相似文献   

13.
Accumulating evidence suggests that Wnt/β-catenin signaling plays a central role in controlling bone mass. We previously reported that constitutive activation of β-catenin (CA-β-catenin) in osteoblasts potentially has side effects on the bone growth and bone remodeling process, although it could increase bone mass. The present study aimed to observe the effects of osteoblastic CA-β-catenin on bone quality and to investigate possible mechanisms of these effects. It was found that CA-β-catenin mice exhibited lower mineralization levels and disorganized collagen in long bones as confirmed by von Kossa staining and sirius red staining, respectively. Also, bone strength decreased significantly in CA-β-catenin mice. Then the effect of CA-β-catenin on biological functions of osteoblasts were investigated and it was found that the expression levels of osteocalcin, a marker for the late differentiation of osteoblasts, decreased in CA-β-catenin mice, while the expression levels of osterix and alkaline phosphatase, two markers for the early differentiation of osteoblasts, increased in CA-β-catenin mice. Furthermore, higher proliferation rate were revealed in osteoblasts that were isolated from CA-β-catenin mice. The Real-time PCR and western blot examination found that the expression level of c-myc and cyclin D1, two G1 progression-related molecules, increased in osteoblasts that were isolated from the CA-β-catenin mice, and the expression levels of CDK14 and cyclin Y, two mitotic-related molecules that can accelerate cells entering into S and G2/M phases, increased in osteoblasts that were isolated from the CA-β-catenin mice. In summary, osteoblastic CA-β-catenin kept osteoblasts in high proliferative state and impaired the terminal osteoblast differentiation, and this led to changed bone structure and decreased bone strength.  相似文献   

14.
Parathyroid hormone (PTH) is an anabolic agent that mediates bone formation through activation of the Gαs-, Gαq- and β-arrestin-coupled parathyroid hormone receptor type 1 (PTH1R). Pharmacological evidence based on the effect of PTH(7–34), a PTH derivative that is said to preferentially activate β-arrestin signaling through PTH1R, suggests that PTH1R-activated β-arrestin signaling mediates anabolic effects on bone. Here, we performed a thorough evaluation of PTH(7–34) signaling behaviour using quantitative assays for β-arrestin recruitment, Gαs- and Gαq-signaling. We found that PTH(7–34) inhibited PTH-induced cAMP accumulation, but was unable to induce β-arrestin recruitment, PTH1R internalization and ERK1/2 phosphorylation in HEK293, CHO and U2OS cells. Thus, the β-arrestin bias of PTH(7–34) is not apparent in every cell type examined, suggesting that correlating in vivo effects of PTH(7–34) to in vitro pharmacology should be done with caution.  相似文献   

15.
Frostbite occurs when the skin is exposed to localized low temperatures. The main causes of frostbite are thought to be direct cell injury due to freezing of cells and tissue ischemia due to abnormal blood circulation. However, the molecular mechanism of frostbite has not been elucidated. This study aims to explain the molecular dynamics of frostbite using a mouse frostbite model and keratinocyte cell culture. Comprehensive gene expression analysis performed on mouse skin samples revealed that β-catenin signaling is activated by frostbite. Immunohistochemistry showed nuclear translocation of β-catenin in the skin of frostbite model mice that was not observed in mice subjected to a mechanical skin damage model induced by tape stripping. Tissue hypoxia, as detected by pimonidazole staining, coexisted with nuclear expression of β-catenin. In keratinocyte cell cultures, nuclear translocation of β-catenin was induced by hypoxia, but not by low temperature. Hypoxia induced epithelial-mesenchymal transition - an important biological event in the healing process of skin - and in vitro wound-healing activity, both of which were suppressed by β-catenin inhibition. Our results suggest that during frostbite, impaired blood flow causes hypoxia, which in turn activates β-catenin that promotes keratinocyte motility and tissue repair.  相似文献   

16.
Tumor necrosis factor (TNF)-α is a potent proinflammatory cytokine involved in the pathogenesis of diabetic neuropathy. We inactivated TNF-α to determine if it is a valid therapeutic target for the treatment of diabetic neuropathy. We effected the inactivation in diabetic neuropathy using two approaches: by genetic inactivation of TNF-α (TNF-α(-/-) mice) or by neutralization of TNF-α protein using the monoclonal antibody infliximab. We induced diabetes using streptozotocin in wild-type and TNF-α(-/-) mice. We measured serum TNF-α concentration and the level of TNF-α mRNA in the dorsal root ganglion (DRG) and evaluated nerve function by a combination of motor (MNCV) and sensory (SNCV) nerve conduction velocities and tail flick test, as well as cytological analysis of intraepidermal nerve fiber density (IENFD) and immunostaining of DRG for NF-κB p65 serine-276 phosphorylated and cleaved caspase-3. Compared with nondiabetic mice, TNF-α(+/+) diabetic mice displayed significant impairments of MNCV, SNCV, tail flick test, and IENFD as well as increased expression of NF-κB p65 and cleaved caspase-3 in their DRG. In contrast, although nondiabetic TNF-α(-/-) mice showed mild abnormalities of IENFD under basal conditions, diabetic TNF-α(-/-) mice showed no evidence of abnormal nerve function tests compared with nondiabetic mice. A single injection of infliximab in diabetic TNF-α(+/+) mice led to suppression of the increased serum TNF-α and amelioration of the electrophysiological and biochemical deficits for at least 4 wk. Moreover, the increased TNF-α mRNA expression in diabetic DRG was also attenuated by infliximab, suggesting infliximab's effects may involve the local suppression of TNF-α. Infliximab, an agent currently in clinical use, is effective in targeting TNF-α action and expression and amelioration of diabetic neuropathy in mice.  相似文献   

17.
Lysosomes function as a primary site for catabolism and cellular signaling. These organelles digest a variety of substrates received through endocytosis, secretion and autophagy with the help of resident acid hydrolases. Lysosomal enzymes are folded in the endoplasmic reticulum (ER) and trafficked to lysosomes via Golgi and endocytic routes. The inability of hydrolase trafficking due to mutations or mutations in its receptor or cofactor leads to cargo accumulation (storage) in lysosomes, resulting in lysosome storage disorder (LSD). In Gaucher disease (GD), the lysosomes accumulate glucosylceramide because of low β-glucocerebrosidase (β-GC) activity that causes lysosome enlargement/dysfunction. We hypothesize that improving the trafficking of mutant β-GC to lysosomes may improve the lysosome function in GD. RNAi screen using high throughput based β-GC activity assay followed by reporter trafficking assay utilizing β-GC-mCherry led to the identification of nine potential phosphatases. Depletion of these phosphatases in HeLa cells enhanced the β-GC activity by increasing the folding and trafficking of Gaucher mutants to the lysosomes. Consistently, the lysosomes in primary fibroblasts from GD patients restored their β-GC activity upon the knockdown of these phosphatases. Thus, these studies provide evidence that altering phosphatome activity is an alternative therapeutic strategy to restore the lysosome function in GD.  相似文献   

18.
β-catenin is a key mediator of the Wnt signaling process and accumulates in the nucleus and at the membrane in response to Wnt-mediated inhibition of GSK-3β. In this study we used live cell photobleaching experiments to determine the dynamics and rate of recruitment of β-catenin at membrane adherens junctions (cell adhesion) and membrane ruffles (cell migration). First, we confirmed the nuclear-cytoplasmic shuttling of GFP-tagged β-catenin, and found that a small mobile pool of β-catenin can move from the nucleus to membrane ruffles in NIH 3T3 fibroblasts with a t0.5 of ~ 30 s. Thus, β-catenin can shuttle between the nucleus and plasma membrane. The localized recruitment of β-catenin-GFP to membrane ruffles was more rapid, and the strong recovery observed after bleaching (mobile fraction 53%, t0.5 ~5 s) is indicative of high turnover and transient association. In contrast, β-catenin-GFP displayed poor recovery at adherens junctions in MDCK epithelial cells (mobile fraction 10%, t0.5 ~8 s), indicating stable retention at these membrane structures. We previously identified IQGAP1 as an upstream regulator of β-catenin at the membrane, and this is supported by photobleaching assays which now reveal IQGAP1 to be more stably anchored at membrane ruffles than β-catenin. Further analysis showed that LiCl-mediated inactivation of the kinase GSK-3β increased β-catenin membrane ruffle staining; this correlated with a faster rate of recruitment and not increased membrane retention of β-catenin. In summary, β-catenin displays a high turnover rate at membrane ruffles consistent with its dynamic internalization and recycling at these sites by macropinocytosis.  相似文献   

19.
The present study was designed to determine the antihyperglycemic function of ginsenoside Rh2 (GS-Rh2) by the regeneration of β-cells in mice that underwent 70% partial pancreatectomy (PPx), and to explore the mechanisms of GS-Rh2-induced β-cell proliferation. Adult C57BL/6J mice were subjected to PPx or a sham operation. Within 14 days post-PPx, mice that underwent PPx received GS-Rh2 (1?mg/kg body weight) or saline injection. GS-Rh2-treated mice exhibited an improved glycemia and glucose tolerance, an increased serum insulin levels, and β-cell hyperplasia. Meanwhile, increased β-cell proliferation percentages and decreased β-cell apoptosis percentages were also observed in GS-Rh2-treated mice. Further studies on the Akt/Foxo1/PDX-1 signaling pathway revealed that GS-Rh2 probably induced β-cell proliferation via activation of Akt and PDX-1 and inactivation of Foxo1. Studies on the abundance and activity of cell cycle proteins suggested that GS-Rh2-induced β-cell proliferation may ultimately be achieved through the regulation of cell cycle proteins. These findings demonstrate that GS-Rh2 administration could inhibit the tendency of apoptosis, and reverse the impaired β-cell growth potential by modulating Akt/Foxo1/PDX-1 signaling pathway and regulating cell cycle proteins. Induction of islet β-cell proliferation by GS-Rh2 suggests its therapeutic potential in the treatment of diabetes.  相似文献   

20.
Roles of β-catenin in somitogenesis in rat embryos   总被引:2,自引:0,他引:2  
Summary We studied the roles of β-catenin in somitogenesis using immunostaining and antisense experiments in rat embryos. High levels of β-catenin appeared transiently in the developing rat somites. Initially, β-catenin accumulation was observed in the core cells of presomitic cell aggregates and then in the lumen of epithelial vesicles. Subsequently, it was confined to the dermomyotomes and their lumen and then the myotomes. High levels of cyclin D1 were observed in the core cells, in the lumen of epithelial vesicles, in myotomes, and in mesenchymal sclerotomes. When embryos were cultured in medium supplemented with β-catenin antisense oligodeoxynucleotide (ODN), the accumulation of β-catenin, but not of cyclin D1, in the nascent somites and dermomyotomes was suppressed, while the number of somites was the same as that observed in control embryos. The number of myosin-positive somites and the amount of myosin per somite in embryos treated with the antisense ODN were lower than those in controls. These results suggested that β-catenin promotes development of myotomal cells during somitogenesis. The function of β-catenin in the development of myotomes may not be correlated to cyclin D1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号