首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Prostate cancer (PCa) is one of the major cancers affecting males with high mortality around the world. Recent studies have found that some long noncoding RNAs play a critical part in the cellular processes of PCa. In our study, aberrant expressed lymphoid enhancer-binding factor-1 antisense RNA 1 (LEF1-AS1), microRNA-330-5p (miR-330-5p), and lymphoid enhancer-binding factor-1 (LEF1) were screened out from a microarray database, the role of the novel noncoding RNA regulatory circuitry in the initiation and development of PCa was investigated. LEF1-AS1 and LEF1 were highly expressed while miR-330-5p was poorly expressed in PCa. Following that, the PCa PC-3 cell line was adopted for subsequently experiments, in which the expression of LEF1-AS1 and miR-330-5p was subsequently altered by means of exogenous transfection. After that, the effects of up- or downregulation of LEF1-AS1 and miR-330-5p on epithelial–mesenchymal transition (EMT) and the cell ability for proliferation, invasion, migration in vitro, and tumorigenesis and lymph node metastasis (LNM) in vivo were evaluated. RNA crosstalk revealed that LEF1-AS1 bound to miR-330-5p and LEF1 was the target gene of miR-330-5p. Silenced LEF1-AS1 or elevated miR-330-5p exhibited inhibited EMT processes, reduced ability of proliferation, invasion and migration, coupling with decreased tumorigenesis and LNM in nude mice. The key findings of this study collectively propose downregulation of LEF1-AS1 competing with miR-330-5p to inhibit EMT, invasion and migration of PCa by LEF1 repression.  相似文献   

2.
3.
Long noncoding RNA (lncRNA) HAND2-AS1 is a well-characterized tumor suppressor in several types of malignancies, while its role in esophagus squamous cell carcinoma (ESCC) is unknown. In this study, we found that lncRNA HAND2-AS1 was downregulated, while microRNA-21 ( miRNA-21) was upregulated in tumor tissues than in adjacent healthy tissues of ESCC patients. Expression levels of lncRNA HAND2-AS1 and miRNA-21 were significantly and inversely correlated in tumor tissues but not in healthy tissues. Plasma levels of lncRNA HAND2-AS1 were lower in ESCC patients than in healthy controls, and downregulation of plasma lncRNA HAND2-AS1 distinguished early stage ESCC patients from healthy controls. lncRNA HAND2-AS1 overexpression resulted in downregulation of miRNA-21 in cells of ESCC cell lines and inhibited cell proliferation, migration, and invasion. miRNA-21 overexpression failed to affect lncRNA HAND2-AS1 expression but significantly attenuated the inhibitory effect of lncRNA HAND2-AS1 overexpression on cancer cell proliferation, migration, and invasion. Therefore, lncRNA HAND2-AS1 may inhibit cancer cell proliferation, migration, and invasion in ESCC by regulating miRNA-21.  相似文献   

4.
In the early stage of ovarian cancer (OC), molecular biomarkers are critical for its diagnosis and treatment. Nevertheless, there is little research on the mechanism underlying tumorigenesis in OC. Herein, we aimed to explore whether long noncoding RNA (lncRNA) HAND2-AS1 participated in the regulation of the cell proliferation, migration, and apoptosis of OC by regulating B-cell lymphoma 2 like 11 (BCL2L11) and microRNA-340-5p (miR-340-5p). Differentially expressed lncRNAs in OC were screened by microarray-based analysis. HAND2-AS1, BCL2L11, and miR-340-5p expression was assessed in normal ovarian and OC tissues and human OC cell lines. Then, the relationships among HAND2-AS1, BCL2L11, and miR-340-5p were explored. Ectopic expression and depletion experiments were applied to analyze the effects of HAND2-AS1, miR-340-5p and BCL2L11 on migration, invasion, and proliferation of OC cells, as well as apoptosis. Lastly, the tumor xenograft in nude mice was conducted to test the tumorigenesis in vivo. In silico analysis displayed poor expression of HAND2-AS1 in OC. HAND2-AS1 specifically sponged with miR-340-5p which was found to directly target BCL2L11. Importantly, HAND2-AS1 or BCL2L11 overexpression or miR-340-5p downregulation resulted in reduction of cell invasion and migration, together with decrease of cell proliferation and increase of cell apoptosis in OC. Besides, high-expressed HAND2-AS1 inhibited the tumorigenesis in nude mice. To sum up, these data suggests HAND2-AS1 as an anti-oncogene in OC through upregulation of BCL2L11 by competitively binding to miR-340-5p, which demonstrates that there are potential diagnosis and therapy values of HAND2-AS1 in OC.  相似文献   

5.
More and more documents have proved that the abnormal expression of long noncoding RNAs (lncRNAs) are correlated with the initiation and progression of colorectal cancer (CRC). lncRNA FOXD3-AS1 has been reported in glioma for its oncogenic property. According to the survival analysis of The Cancer Genome Atlas database, FOXD3-AS1 upregulation implied lower survival rate of patients with CRC. Quantitative real-time polymerase chain reaction showed the overexpression of FOXD3-AS1 in both CRC tissues and cells. The Kaplan–Meier method demonstrated the prognostic value of FOXD3-AS1 for patients with CRC. To explore the effect of FOXD3-AS1 on CRC progression, loss-of-function experiments were carried out, whose results indicated that knockdown of FOXD3-AS1 suppressed cell proliferation, migration, and invasion, inhibited cell cycle and promoted cell apoptosis in vitro. In vivo experiments affirmed that FOXD3-AS1 affected tumor growth. FOXD3-AS1 expression was enriched in the cytoplasm of CRC cells. Mechanism experiments revealed that FOXD3-AS1 served as a competing endogenous RNA to upregulate SIRT1 by sponging miR-135a-5p. In addition, SIRT1 silencing also restrained cell proliferation and motility. Rescue assays revealed the biological function of FOXD3-AS1/miR-135a-5p/SIRT1 axis in CRC progression. In conclusion, FOXD3-AS1 promotes CRC progression by regulating miR-135a-5p/SIRT1 axis, shedding lights on the way to CRC treatments.  相似文献   

6.
Breast cancer (BCa) is the most common malignant tumor in females. Long noncoding RNAs (lncRNAs) are deregulated in many types of human cancers, including BCa. The purpose of the present study was to examine the expression profile and biological role of HOXD cluster antisense RNA 1 (HOXD-AS1) in BCa. Our results revealed that HOXD-AS1 was upregulated in BCa tissues and cell lines, and high HOXD-AS1 expression was correlated with aggressive clinicopathological characteristics of BCa patients. Further gain-of-function and loss-of-function analysis showed that HOXD-AS1 overexpression promoted, whereas HOXD-AS1 knockdown inhibited BCa cell proliferation, cell cycle progression, migration, and invasion, indicating that HOXD-AS1 may function as a novel oncogene in BCa. Mechanistically, HOXD-AS1 could activate epithelial-mesenchymal transition (EMT) in BCa cells. We further proved that HOXD-AS1 might serve as a competing endogenous RNA of miR-421 in BCa cells, and miR-421 was downregulated and negatively correlated with HOXD-AS1 expression in BCa tissues. Besides, we confirmed that SOX4, a master regulator of EMT, was a direct target gene of miR-421. Further, rescue experiments suggested that miR-421 overexpression partly abrogated the oncogenic role of HOXD-AS1 in BCa cells. Therefore, we shed light on that HOXD-AS1/miR-421/SOX4 axis may be considered as a novel therapeutic target for the treatment of BCa patients.  相似文献   

7.
Emerging studies have revealed the critical role of long non-coding RNAs (lncRNAs) in epithelial ovarian cancer (EOC) development and progression. Till now, the roles and potential mechanisms regarding FEZF1 antisense RNA 1 (FEZF1-AS1) within ovarian cancer (OC) remain unclear. The objective of this study was to uncover the biological function and the underlying mechanism of LncRNA FEZF1-AS1 in OC progression. FEZF1-AS1 expression levels were studied in cell lines and tissues of human ovarian cancer. In vitro studies were performed to evaluate the impact of FEZF1-AS1 knock-down on the proliferation, invasion, migration and apoptosis of OC cells. Interactions of FEZF1-AS1 and its target genes were identified by luciferase reporter assays. Our data showed overexpression of FEZF1-AS1 in OC cell lines and tissues. Cell migration, proliferation, invasion, wound healing and colony formation were suppressed by silencing of FEZF1-AS1. In contrast, cell apoptosis was promoted by FEZF1-AS1 knock-down in vitro. Furthermore, online bioinformatics analysis and tools suggested that FEZF1-AS1 directly bound to miR-130a-5p and suppressed its expression. Moreover, the inhibitory effects of miR-130a-5p on the OC cell growth were reversed by FEZF1-AS1 overexpression, which was associated with the increase in SOX4 expression. In conclusion, our results revealed that FEZF1-AS1 promoted the metastasis and proliferation of OC cells by targeting miR-130a-5p and its downstream SOX4 expression.  相似文献   

8.
Long noncoding RNA (lncRNA) DiGeorge syndrome critical region gene 5 (DGCR5) has been reported to correlate with a variety of cancers, with its expression pattern and potential mechanism not clarified in gastric cancer (GC). In this study, we demonstrated that DGCR5 was downregulated in cancerous tissues and plasma samples from patients with GC, and its downregulation was associated with advanced TNM stage and positive lymphatic metastasis. Plasma DGCR5 had an area under the receiver operating characteristic curve (AUC) of 0.722 for diagnosis of GC. Gain- and loss-of-function of DGCR5 revealed that DGCR5 functioned as a competing endogenous RNA for miR-23b to suppress GC cell proliferation, invasion and migration, and facilitate apoptosis by regulating PTEN and BTG1 in vitro. Furthermore, the overexpression of DGCR5 suppressed tumor growth, and inhibited the expression of miR-23b and proliferation antigen Ki-67, but increased the expression of PTEN and BTG1 in vivo. In conclusion, our results show that DGCR5 is a tumor-suppressive lncRNA that regulates PTEN and BTG1 expression through directly binding to miR-23b. This mechanism may contribute to a better understanding of GC pathogenesis and provide a potential therapeutic strategy for GC.  相似文献   

9.
Evidence, demonstrating long noncoding RNAs (lncRNAs) as critical players in cancer, remains to increase. lncRNA SBF2-AS1 was reported to be involved in several cancers, such as hepatocellular carcinoma. However, the role of SBF2-AS1 in colorectal cancer (CRC) is unknown. We showed lncRNA SBF2-AS1 expression was growing in CRC samples, especially in advanced cases. Accordingly, SBF2-AS1 possesses higher expression in CRC cell lines than in normal cell line. Moreover, SBF2-AS1 high expression indicated a low survival rate. Functionally, SBF2-AS1 knockdown suppressed the proliferation, migration, and invasion of CRC cells. In terms of mechanism, SBF2-AS1 upregulation restrained the activity of miR-619-5p and led to overexpression of HDAC3. Importantly, downregulation of miR-619-5p or HDAC3 overexpression reversed SBF2-AS1-silencing-caused suppression on proliferation and metastasis. Summarily, our findings elucidated a crucial role of SBF2-AS1 as a miR-619-5p sponge, shedding novel light on lncRNA-related prognostics.  相似文献   

10.
Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. It has been shown that long noncoding RNA (lncRNA) might play a role in HCC. The aim of the present study was to identify the role of long intergenic noncoding RNA 01551 (LINC01551) in the HCC development and explore the underlying mechanism of LINC01551/miR-122-5p/ADAM10 axis. The differentially expressed lncRNAs associated with HCC were screened out by a microarray analysis. The expression of LINC01551, miR-122-5p, and ADAM10 was determined in HCC tissues and cells. The potential miRNA (miR-122-5p) regulated by LINC01551 was explored, and the target relationship between miR-122-5p and ADAM10 was confirmed. To evaluate the effect of LINC01551 and miR-122-5p on proliferation, migration, invasion, and apoptosis of HCC, different plasmids were delivered into MHCC97-H cells. High expression of LINC01551 and ADAM10 yet low-expression of miR-122-5p were revealed in HCC tissues and cells. Overexpression of miR-122-5p could downregulate ADAM10. Biological prediction websites and fluorescence in situ hybridization assay verified that LINC01551 was mainly expressed in the cytoplasm. Silencing LINC01551 reduced HCC cell viability, proliferation, migration, invasion, and cell cycle entry yet induce cell apoptosis. Upregulation of LINC01551 increased its ability of competitively binding to miR-122-5p, thus reducing miR-122-5p and upregulating ADAM10 expression, as well as promoting the proliferative, migrative, and invasive ability. Taken together the results, it is highly possible that LINC01551 functions as an competing endogenous RNA (ceRNA) to regulate the miRNA target ADAM10 by sponging miR-122-5p and therefore promotes the development of HCC, highlighting a promising competitive new target for the HCC treatment.  相似文献   

11.
Tumor suppressor long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) exists in various cancers. Nonetheless, the functions of lncRNA MEG3 in choriocarcinoma (CC) are still not well studied. We explored the effects of lncRNA MEG3 on human CC JEG-3 and BeWo cells. lncRNA MEG3 was overexpressed, and the effects of lncRNA MEG3 on cell viability, proliferation, apoptosis, migration, and invasion were assessed by the cell counting kit-8 assay, western blot analysis, flow cytometry (plus western blot analysis), and transwell assay (plus western blot analysis), respectively. Then, the expression level of miR-211 was detected by real-time quantitative polymerase chain reaction. After that, the effects of dysregulated microRNA-211 (miR-211) with overexpressing lncRNA MEG3 on JEG-3 cells and BeWo cells were testified. Western blot analysis was used to study the involvements of the signaling pathways in the lncRNA MEG3-associated modulation. We found that lncRNA MEG3 upregulation reduced cell viability, inhibited proliferation, migration and invasion, and promoted apoptosis. Expression of miR-211 was upregulated after lncRNA MEG3 overexpression. Effects of lncRNA MEG3 overexpression were augmented by miR-211 overexpression, while they were declined by miR-211 silencing. Phosphorylated levels of PI3K, AKT, and AMP-activated protein kinase (AMPK) were decreased by lncRNA MEG3 overexpression via regulation of miR-211. To sum up, lncRNA MEG3 could repress proliferation, migration and invasion, and promote apoptosis of JEG-3 and BeWo cells through upregulating miR-211. The PI3K/AKT and AMPK pathways were inhibited by lncRNA MEG3 overexpression via regulation of miR-211.  相似文献   

12.
13.
Increasing reports indicate that circular RNAs (circRNAs) are very important regulators in human diseases, including cancers. In bladder cancer (BC), several circRNAs have been reported to be involved in tumor progressions, such as circ-ITCH and circTCF25. However, the functions of most circRNAs in BC still remains largely unknown. In this study, we identified a novel circRNA termed as circ-VANGL1 by bioinformatics analysis. We found that circ-VANGL1 was highly expressed in BC tissues compared with adjacent normal tissues. Furthermore, we showed that circ-VANGL1 could serve as a prognostic marker for patients with BC. Through functional experiments, we found that circ-VANGL1 knockdown significantly suppressed BC cell proliferation, cell cycle, migration, and invasion in vitro. Besides, circ-VANGL1 silence inhibited BC cell propagation in vivo. Mechanistically, we identified circ-VANGL1 as a sponge of miR-605-3p which targeted VANGL1 in BC cells. Through repressing miR-605-3p availability, circ-VANGL1 contributes to VANGL1 expression, consequently leading to BC cell proliferation, migration, and invasion. Taken together, our study demonstrated circ-VANGL1/miR-605-3p/VANGL1 as a novel essential signaling pathway involved in BC progression.  相似文献   

14.
This study aimed to determine long non‐coding RNA (lncRNA) small nucleolar RNA host gene 14 (SNHG14) expression in pancreatic cancer and to explore the potential molecular actions of SNHG14 in mediating pancreatic cancer progression. Gene expression was detected by quantitative real‐time PCR. Cell proliferation, growth and invasion were detected by respective CCK‐8, colony formation, and transwell invasion assays. Protein levels were measured by Western blotting. Cell apoptosis and caspase‐3 activity were detected by flow cytometry and caspase‐3 activity assay. The link between miR‐613 and its targets was evaluated by luciferase reporter assay. In vivo tumour growth was evaluated using a xenograft model of nude mice. SNHG14 expression was up‐regulated in cancerous tissues from pancreatic cancer patients. High expression of SNHG14 was associated with poor tumour differentiation, advanced TNM stage and nodal metastasis. SNHG14 overexpression enhanced cell proliferative, growth and invasive abilities, and suppressed apoptotic rates and caspase‐3 activity in pancreatic cancer cells, while SNHG14 knockdown exerted opposite effects. Mechanistic studies revealed that miR‐613 was targeted by SNHG14, and Annexin A2 (ANXA2) was targeted and inversely regulated by miR‐613 in pancreatic cancer cells. In vivo studies showed that SNHG14 knockdown attenuated tumour growth. MiR‐613 was down‐regulated and ANXA2 was up‐regulated in the pancreatic cancer tissues, and SNHG14 expression levels were inversely correlated with miR‐613 expression levels and positively correlated with the ANXA2 mRNA expression levels. Collectively, our results suggest that SNHG14 potentiates pancreatic cancer progression through modulation of annexin A2 expression via acting as a competing endogenous RNA for miR‐613.  相似文献   

15.
Early diagnosis of gastric cancer (GC) is an effective method to improve prognosis. Increasing number of long noncoding RNAs (lncRNAs) have been reported as biomarkers for several cancers. We aim to detect the level of lncRNA B3GALT5-AS1 and its association with clinical parameters and to further explore its application value in GC. We measured serum B3GALT5-AS1 expression in 107 patients with GC, 40 polyp patients, and 87 normal controls to explore the significance of serum B3GALT5-AS1 in GC using the quantitative real-time polymerase chain reaction method. The result demonstrated that B3GALT5-AS1 level was markedly richer in GC patients than that in normal people (P < .001). B3GALT5-AS1 may be served as a diagnostic marker for distinguishing GC patients from healthy people, and the proportion under the receiver operating characteristics curve is 0.816 (95% confidence interval, 0.758-0.874; P = .03). Further exploration validated that high serum B3GALT5-AS1 level was related to TNM stage (P = .024), and lymph node metastasis (P = .023). Our study suggested that serum B3GALT5-AS1 may be employed as an ideal biomarker for early screening of GC.  相似文献   

16.
17.
Ovarian cancer is a common malignancy among women with some clinically approved diagnostic coding gene biomarkers. However, long non‐coding RNAs (lncRNAs) have been indicated to play an important role in controlling tumorigenesis of ovarian cancer. Hereby, the aim of the study was to uncover the function of lncRNA LINC00176 in the development and progression of ovarian cancer by regulating ceruloplasmin (CP). Bioinformatics prediction in combination with RT‐qPCR analysis for the expression pattern of LINC00176 revealed that LINC00176 was highly expressed in ovarian cancer tissues as well as in ovarian cancer cell lines, respectively. LINC00176 was predominantly localized in the nucleus. Delivery of si‐LINC00176, oe‐LINC00176, si‐BCL3 and si‐CP plasmids was conducted to explore the effects of LINC00176 on ovarian cancer. Promoted proliferation, migration and invasion along with reduced apoptosis were observed in cells treated with oe‐LINC00176, while si‐BCL3 and si‐CP were able to block the promoting effects. Investigations with regard to the correlation between LINC00176 and promoter region of CP turned out to be positive via B‐cell CLL/lymphoma 3 (BCL3) by means of dual‐luciferase reporter gene assay, ChIP and RIP assays. Furthermore, oncogenic properties of the LINC00176/BCL3/CP axis were also demonstrated by tumour formation in vivo generated upon injecting cells in nude mice. Our results demonstrate that restored LINC00176 initiates tumorigenesis in ovarian cancer by increasing CP expression via recruiting BCL3, the mechanism of which represented a potential and promising therapeutic target for the disease.  相似文献   

18.
Ovarian cancer (OC) is a highly prevalent gynecologic malignancy and its mortality is extremely high. Therefore, the development of novel therapeutic approaches for OC is of great significance. In this study, LINC01342 was upregulated in OC tissue in the GSE38666 microarray and in tumor tissue samples collected in our center. The silencing of LINC01342 suppressed the proliferative and metastatic capacities of A2780 and HO8910 cells. Subcellular distribution assays showed that LINC01342 was mainly enriched in the cytoplasm. Subsequently, the downregulation of microRNA-30c-2-3p was proven to be the target of LINC01342. The silencing of microRNA-30c-2-3p enhanced the clonality and migratory capacity of OC cells. Moreover, the silencing of microRNA-30c-2-3p could reverse the inhibited migration and clonality in OC cells caused by LINC01342 knockdown. In addition, hypoxia-inducible factor 3 subunit α (HIF3A) was proven to be the target gene of microRNA-30c-2-3p, which was upregulated. HIF3A was negatively regulated by microRNA-30c-2-3p but positively regulated by LINC01342 in OC cells. An RNA binding protein immunoprecipitation assay showed that microRNA-30c-2-3p, LINC01342, and HIF3A could bind to argonaute RISC catalytic component 2. The overexpression of HIF3A reversed the inhibited migration and clonality in OC cells with LINC01342 knockdown. By analyzing the follow-up data from the enrolled OC patients, the LINC01342 and HIF3A levels were negatively correlated with prognosis, while the microRNA-30c-2-3p level was positively correlated with the same. In short, the upregulated LINC01342 in OC absorbs microRNA-30c-2-3p to release HIF3A. Thus, upregulated HIF3A expression accelerates the progression of OC.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号