首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Emerging evidence highlights the key regulatory roles of long noncoding RNAs (lncRNAs) in the initiation and progression of numerous malignancies. The lncRNA identified as differentiation antagonizing nonprotein coding RNA (DANCR) is a novel lncRNA widely involved in the development of multiple human cancers. However, the function of DANCR and its potential molecular mechanism in cervical cancer remain unclear. In this study, we discovered that DANCR was significantly elevated in cervical cancer tissues and cells, and was closely correlated with poor prognosis of cervical cancer patients. In addition, knockdown of DANCR inhibited proliferation, migration, and invasion of cervical cancer cells in vitro, indicating that DANCR functioned as an oncogene in cervical cancer. Moreover, we verified that DANCR could directly bind to miR-335-5p, isolating miR-335-5p from its target gene Rho-associated coiled-coil containing protein kinase 1 (ROCK1). Functional analysis showed that DANCR regulated ROCK1 expression by competitively binding to miR-335-5p. Further cellular behavioral experiments revealed that miR-335-5p mimics and ROCK1 knockdown reversed the effects of upregulated DANCR on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cervical cancer cells by rescue assays. In summary, this study demonstrated that DANCR promoted cervical cancer progression by functioning as a competing endogenous RNA (ceRNA) to regulate ROCK1 expression via sponging miR-335-5p, suggesting a novel potential therapeutic target for cervical cancer.  相似文献   

4.
Numerous studies have reported that long noncoding RNA (lncRNA) dysregulation is involved in the progression of many malignant tumors, including glioma. The lncRNA ZNFX1 antisense RNA 1 (ZFAS1) plays an oncogenic role in various malignant tumors, such as gastric cancer and hepatocellular carcinoma. However, the underlying molecular mechanism of ZFAS1 in glioma has not been fully clarified. In this study, we found that the expression of ZFAS1 was upregulated in both glioma tissues and cell lines. Functional experiments revealed that ZFAS1 promoted glioma proliferation, migration and invasion, and increased resistance to temozolomide in vitro. By using online databases, RNA pull-down assays and luciferase reporter assays, ZFAS1 was demonstrated to act as a sponge of miR-150-5p. Furthermore, proteolipid protein 2 (PLP2) was shown to be the functional target of miR-150-5p. Rescue experiments revealed that ZFAS1 regulated the expression of PLP2 by sponging miR-150-5p. Finally, a xenograft tumor assay demonstrated that ZFAS1 promoted glioma growth in vivo. Our results showed that ZFAS1 promoted glioma malignant progression by regulating the miR-150-5p/PLP2 axis, which may provide a potential therapeutic target for the treatment of glioma.  相似文献   

5.
6.
7.
Emerging evidence has shown that the long noncoding RNA urothelial carcinoma–associated 1 (UCA1) plays a tumor-promoting role in colorectal cancer, while miR-28-5p shows tumor-inhibitory activity in several tumor types. However, the mechanisms both of these in colon cancer progression are still unknown. In this work, the detailed roles and mechanisms of UCA1 and its target genes in colon cancer were studied. The results showed that UCA1 was upregulated in colon cancer tissues when compared with the adjacent nonhumorous tissues, as well as in the various colon cancer cell lines, but the expression of miR-28-5p showed an opposite trend. Furthermore, a high UCA1 level in colon cancer tissues is positively associated with the tumor size and advanced tumor stages. Functional assays revealed that both UCA1 knockdown and miR-28-5p overexpression could inhibit colon cancer cell growth and migration. Further mechanistic studies indicated that UCA1 knockdown played tumor suppressive roles in SW480 and HT116 cells through binding with miR-28-5p. We also, for the first time, identified HOXB3 as the target gene of miR-28-5p and that HOXB3 overexpression could mediate the functions of UCA1 in cell proliferation and migration of colon cancer cells. In conclusion, our data provided evidence for the regulatory network of UCA1/miR-28-5p/HOXB3 in colon cancer, suggesting that UCA1, miR-28-5p, and HOXB3 are the potential targets for colon cancer therapy.  相似文献   

8.
9.
10.
Colorectal cancer (CRC) brings more than 600 000 deaths every year around the globe, making itself the third most frequently occurred carcinoma. The great progress human achieved in diagnosis and treatment of various cancers has failed to reverse this trend. Fortunately, growing evidence has implied the relationship between lncRNAs and cancer progression. Long noncoding RNA (lncRNA) PRKCQ-AS1 was heightened in CRC cells and tissues and related with dismal prognosis of CRC patients. Knockdown of PRKCQ-AS1 would induce a decrease in proliferative and migrating ability of CRC cells. Also, PRKCQ-AS1 enriched in cytoplasm of CRC cells and negatively regulated miR-1287-5p level. More important, PRKCQ-AS1 could bind to argonaute 2 and function in the RNA-induced silencing complex with miR-1287-5p. Therefore, PRKCQ-AS1 was a competing endogenous RNA for miR-1287-5p. Subsequently, it was validated that miR-1287-5p could suppress the proliferative and migratory functions in CRC. Furthermore, PRKCQ-AS1 could upregulate the mRNA and protein level of YBX1 targeted by miR-1287-5p. And YBX1 expression was elevated in CRC cells and tissues. Rescue assays in vitro and in vivo showed that overexpression of YBX1 could partly offset the effect of CRC progression induced by knocking down PRKCQ-AS1, demonstrating PRKCQ-AS1 mediating CRC progression via miR-1287-5p/YBX1 pathway.  相似文献   

11.
Lung adenocarcinoma is a major form of non–small-cell lung cancer that frequently strikes nonsmokers. The disease is often diagnosed at a late stage and the 5-year survival rate is very low. Although previous studies found many somatic alterations associated with lung adenocarcinoma, the molecular basis of the development and progression of the disease is not well understood. We found that long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2), a putative tumor suppressor, was downregulated in both patient adenocarcinoma tissues and cultured lung cancer cells. Its tumor suppression function seemed to be dependent on its binding to miR-4735-5p. Changing the levels of CASC2 and miR-4735-3p in the cultured adenocarcinoma cells could affect the malignant phenotypes as well as growth of tumors derived from the cells injected into nude mice. Furthermore, the lncRNA and miR-4735-3p interplay likely the suppressed tumor growth through the downstream mammalian target of rapamycin signaling pathway. The results have revealed molecular details that may be critical for the development of lung adenocarcinoma, opening opportunities for the development of novel, and therapeutic tools.  相似文献   

12.
13.
14.
Long noncoding RNAs (lncRNAs) played an important role in tumorigenesis and development of hepatocellular carcinoma (HCC). In this study, we first demonstrated that lncRNA DLX6 antisense RNA 1 (DLX6-AS1) was upregulated in cancer tissues and cells lines compared with normal adjacent and cell line. Knock-down DLX6-AS1 by transfection with small interfering RNA (siRNA) suppressed cell proliferation, migration, and invasion of HCC cells. Cell cycle analysis showed that cells transfected with siRNA were arrested in G0/G1 phase. Then, we performed dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay to show that DLX6-AS1 could bind with miR-424-5p. And cotransfection inhibitor of miR-424-5p with siRNA of DLX6-AS1 could abolish the inhibitory effect of siRNA of DLX6-AS1 on cell proliferation, migration, and invasion. Moreover, we further demonstrated that the oncogene WEE1 G2 checkpoint kinase (WEE1) was the target of miR-424-5p and expression levels of WEE1 were positive correlation with that of DLX6-AS1. Taken together, these results suggested that upregulated DLX6-AS1 promoted cell proliferation, migration, and invasion of HCC through increasing expression of WEE1 via targeting miR-424-5p.  相似文献   

15.
16.
17.
Cervical cancer holds one of the highest morbidity and mortality in various types of cancers. It even leads to the most number of cancer-related deaths of women. A lot of research has indicated that the anomalous expression of long noncoding RNAs (lncRNAs) would induce carcinogenesis and is associated with poor prognosis of patients with cancer. However, the function and mechanism of many lncRNAs still call for further research. Tumor Protein P73 Antisense RNA 1 (TP73-AS1) is no exception. LncRNA TP73-AS1 has been found to promote cancer progressions in various cancers. It is upregulated in cervical cancer cells. The proliferation and migration ability of cervical cancer cells can also be boosted by TP73-AS1 in return. Meanwhile, miRNA-329-3p is downregulated in cervical cancer cells and could bind with both TP73-AS1 and ADP Ribosylation Factor 1 (ARF1). TP73-AS1 inhibited miR-329-3p expression while miR-329-3p inhibited ARF1 expression. More importantly, TP73-AS1 can positively regulate ARF1 expression. Based on all these experiments, TP73-AS1 regulates ARF1 expression by competitively binding with miR-329-3p, thus regulating cervical cancer progression. Further rescue assays confirmed TP73-AS1 regulates cervical cell proliferation and migration via miR-329-3p/ARF1. TP73-AS1 might serve as a novel regulator in cervical cancer.  相似文献   

18.
Emerging studies have indicated that long noncoding RNAs (lncRNAs) possess various functions in initiating human cancers. However, the role of lncRNAs in hepatocellular carcinoma (HCC) still remains ill understood. In this study, we sought to investigate the role of lncRNA CACNA1G-AS1 in HCC progression. Through bioinformatics analysis, we found that CACNA1G-AS1 expression was significantly upregulated in HCC tissues compared with that in the adjacent normal tissues. Moreover, CACNA1G-AS1 upregulation indicated poor prognosis in HCC patients. Knockdown of CACNA1G-AS1 attenuated the proliferation, migration, and invasion of HCC cells. Additionally, decreased expression of CACNA1G-AS1 prevented epithelial–mesenchymal transition. In vivo assay also showed that CACNA1G-AS1 silencing HCC cells have smaller tumor volumes and weights. Further investigations demonstrated that CACNA1G-AS1 worked as a competing endogenous RNA to bind microRNA-2392 (miR-2392) and thereby alleviate the repression of the downstream target C1orf61. Collectively, CACNA1G-AS1 promotes HCC progression through regulating the miR-2392/C1orf61 pathway.  相似文献   

19.
Long noncoding RNAs (lncRNAs) display essential roles in cancer progression. FLVCR1-AS1 is a rarely investigated lncRNAs involved in various human cancers, such as hepatocellular carcinoma and lung cancer. However, its function in glioma has not been clarified. In our study, we found that FLVCR1-AS1 was highly expressed in glioma tissues and cell lines. And upregulation of FLVCR1-AS1 predicted poor prognosis in patients with glioma. Moreover, FLVCR1-AS1 knockdown inhibited proliferation, migration and invasion of glioma cells. Through bioinformatics analysis, we identified that FLVCR1-AS1 was a sponge for miR-4731-5p to upregulate E2F2 expression. Moreover, rescue assays indicated that FLVCR1-AS1 modulated E2F2 expression to participate in glioma progression. Altogether, our research demonstrates that the FLVCR1-AS1/miR-4731-5p/E2F2 axis is a novel signaling in glioma and may be a potential target for tumor therapy.  相似文献   

20.

Object

This study aimed to investigate the role of lncRNA OIP5-AS1 in regulating radioresistance of colorectal cancer (CRC) cells.

Methods

Microarray analysis was used to screen out lncRNAs differentially expressed in radio-resistant CRC cell lines. Expression levels of OIP5-AS1, miR-369-3p and DYRK1A in CRC cell lines were measured by qRT-PCR. Protein expression of DYRK1A was determined by western blot. The target relationships among OIP5-AS1, miR-369-3p and DYRK1A were validated by dual luciferase reporter assay. Impacts of OIP5-AS1 or DYRK1A on CRC cellular activity and apoptosis were investigated by MTT assay, clonogenic survival assay and flow cytometry to analyze OIP5-AS1 or DYRK1A’s effect on radioresistance of CRC cells.

Results

LncRNA OIP5-AS1 and DYRK1A were down-regulated in radio-resistant CRC cell lines. OIP5-AS1 suppressed the expression of miR-369-3p, thus up-regulating DYRK1A, the downstream gene of miR-369-3p. OIP5-AS1 and DYRK1A impaired cell clonogenic survival and promoted cell apoptosis after irradiation, improving radiosensitivity of CRC cells.

Conclusion

LncRNA OIP5-AS1 suppressed cell viability, promoted radio-induced apoptosis, and enhanced the radiosensitivity of CRC cells by regulating DYRK1A expression through miR-369-3p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号