首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusion of differentiated somatic cells with pluripotent stem cells can be used for cellular reprogramming, but the efficiency to obtain hybrid cells is extremely low. Here, we explored a novel cell fusion system, termed single-cell fusion, the efficiency was significantly improved verified by fusion of mouse embryonic stem cells (mESCs), comparing to traditional polyethylene glycol fusion. Then, we employed the optimized system to perform cell fusion of porcine embryonic fibroblasts (PEFs) and porcine pluripotent stem cells (pPSCs) with mESCs. The hybrid cells showed both red and green fluorescence and expressed species-specific genes of mouse and pig to evidence that the fusion was successful. The hybrid cells displayed characteristics similar with mESCs, including colony morphology, alkaline phosphatase positive and formation of embryoid body, and the expressions of core pluripotent factors OCT4, NANOG, and SOX2 of the pig were induced in the mESC/PEF hybrid cells. The results indicate PEFs and pPSCs could be reprogrammed by mESCs via the single-cell fusion. Taking advantage of the hybrid cells to investigate the signaling pathways depended on the pluripotency of pig, we suggest the transforming growth factor-β signaling pathways may play important roles. In summary, the single-cell fusion is highly efficient, and we believe in the future it will be widely used in the application and fundamental research.  相似文献   

2.
Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.  相似文献   

3.
Authentic or na?ve embryonic stem cells (ESC) have probably never been derived from the inner cell mass (ICM) of pig blastocysts, despite over 25 years of effort. Recently, several groups, including ours, have reported induced pluripotent stem cells (iPSC) from swine by reprogramming somatic cells with a combination of four factors, OCT4 (POU5F1)/SOX2/KLF4/c-MYC delivered by retroviral transduction. The porcine (p) iPSC resembled human (h) ESC and the mouse "Epiblast stem cells" (EpiSC) in their colony morphology and expression of pluripotent genes, and are likely dependent on FGF2/ACTIVIN/NODAL signaling, therefore representing a primed ESC state. These cells are likely to advance swine as a model in biomedical research, since grafts could potentially be matched to the animal that donated the cells for re-programming. The objective of the present work has been to develop na?ve piPSC. Employing a combination of seven reprogramming factors assembled on episomal vectors, we successfully reprogrammed porcine embryonic fibroblasts on a modified LIF-medium supplemented with two kinase inhibitors; CHIR99021, which inhibits GSK-3beta, and PD0325901, a MEK inhibitor. The derived piPSC bear a striking resemblance to na?ve mESC in colony morphology, are dependent on LIF to maintain an undifferentiated phenotype, and express markers consistent with pluripotency. They exhibit high telomerase activity, a short cell cycle interval, and a normal karyotype, and are able to generate teratomas. Currently, the competence of these lines for contributing to germ-line chimeras is being tested.  相似文献   

4.
5.
Development and improvement of in vitro culture system supporting self-renewal and unlimited proliferation of porcine pluripotent stem cells (pPSCs) is an indispensable process for the naïve pPSCs establishment. In this study, we modified the previous culture system and attempted to develop a novel chemically defined medium (KOFL) for the establishment of pPSCs. It has been cultured >45 passages with flat colony morphology and normal karyotypes in in vitro environment. These cells exhibited alkaline phosphatase activity and expressed pluripotency markers such as OCT4, SOX2, and NANOG, and also possessed differentiation abilities both in vitro and in vivo, proving by the formation of embryonic bodies and teratomas into three germ layers. Then the cells transfected with a green fluorescent protein (GFP) and the GFP positive cells contribute to the porcine preimplantation embryo development. In addition, these cells maintained long duration under feeder-free condition. In conclusion, our results demonstrated that the pPSCs could be derived from preimplantation porcine embryos in serum-free medium and cultured under the feeder-free condition, providing an effective reference for further optimization of the pPSCs culture system.  相似文献   

6.
Germline competent embryonic stem (ES) cells can serve as a tool to create genetically engineered rat strains used to elucidate gene function or provide disease models. In optimum culture conditions, ES cells are able to retain their pluripotent state. The type of components present and their concentration in ES cell culture media greatly influences characteristics of ES cells including the ability to maintain the cells in a pluripotent state. We routinely use 2i media containing inhibitors CHIR99021 and PD0325901 to culture rat ES cells. CHIR99021 specifically inhibits the Gsk3β pathway. We have found that the vendor source of CHIR99021 has a measurable influence on the level of aneuploidy seen over time as rat ES cells are passaged. Karyotyping of three different rat ES cell lines passaged multiple times showed increased aneuploidy when CHIR99021 from source B was used. Mass spectrometry analysis of this inhibitor showed the presence of unexpected synthetic small molecules, which might directly or indirectly cause increases in chromosome instability. Identifying these molecules could further understanding of their influence on chromosome stability and indicate how to improve synthesis of this media component to prevent deleterious effects in culture.  相似文献   

7.
目的:研究三氯乙烯(TCE)对斑马鱼胚胎心脏发育的毒性作用及其机制,为寻找干预靶点提供实验依据。方法:斑马鱼胚胎来自于国家斑马鱼资源中心,分为DMSO组(对照组)、DMSO+CHIR组、DMSO+XAV组、TCE处理组、TCE+CHIR组和TCE+XAV组(TCE设置为1、10、100 ppb三个不同的浓度;DMSO:二甲基亚砜;CHIR:CHIR-99021,Wnt信号通路激活剂;XAV:XAV-939,Wnt信号通路抑制剂),每组60条。斑马鱼胚胎饲养于系统养殖水中,恒温28℃,每隔24 h更换养殖水,并分别加入相应药物。连续培养72 h,收集斑马鱼胚胎的心脏组织,提取RNA进行转录组芯片分析,并以荧光定量PCR验证Wnt信号通路相关基因的表达。结果:与对照组相比,三氯乙烯暴露导致斑马鱼心脏畸形显著增加,以心房心室比例异常、环化不全以及心包水肿等为主要表型。芯片分析结果显示,TCE处理组Wnt信号通路相关基因(Axin2、Sox9b、Nkx2.5)表达受到显著影响。qPCR结果进一步验证,TCE处理组与DMSO对照组相比,Wnt通路靶基因Axin2、Sox9b及Nkx2.5的mRNA水平显著下调(P<0.05),提示Wnt信号通路被抑制。Wnt激活剂CHIR降低TCE导致的斑马鱼胚胎心脏发育异常,而添加Wnt通路抑制剂XAV后,斑马鱼胚胎心脏畸形率显著增加(P<0.05)。结论:三氯乙烯暴露导致斑马鱼胚胎心脏畸形,Wnt信号通路参与三氯乙烯的心脏发育毒性。  相似文献   

8.
人表皮干细胞(human keratinocyte stem cells, hKSCs)可作为上皮源性的成体干细胞应用于牙齿再生,但是其诱导效率较低.本研究利用小分子化合物CHIR-99021提高hKSCs的Wnt/β-catenin信号活性,再与具有诱导成牙潜能的小鼠牙胚间充质重组,构建嵌合体,并移植裸鼠肾囊膜下培养20 d. 将嵌合体组织切片,并利用组织染色和免疫组化等方法鉴定牙齿结构. 结果显示,经FGF8诱导处理的hKSCs与小鼠牙胚间充质构成的嵌合体的成牙率为27.80%,其中成釉率仅为40.00%;经CHIR 99021诱导处理的hKSCs与小鼠牙胚间充质构成的嵌合体的成牙率仅为18.20%,其中成釉率高达100%;而CHIR 99021与FGF8协同作用,则进一步提高嵌合体成牙率至40.00%,其中成釉率也达75.00%. 进一步的研究发现,经CHIR-99021处理后,hKSCs的Wnt/β-catenin信号活性明显提高,同时FGF8的表达水平也显著上调. 以上结果表明,CHIR-99021可通过上调Wnt/β-catenin信号活性水平,同时促进FGF8表达,与FGF8协同,高效诱导hKSCs分化为具有分泌釉质功能的成釉质细胞. 研究结果对利用hKSCs作为上皮来源的成体细胞应用于人类牙齿再生的研究具有重要意义.  相似文献   

9.
目的:观察两种GSK-3β抑制剂(氯化锂和CHIR99021)对间充质干细胞向神经元样细胞分化的影响作用。方法:体外分离、扩增人胎盘间充质干细胞,分别用低浓度氯化锂和CHIR99021对细胞进行刺激,检测其对增值活力及Wnt通路中β连环蛋白调节作用的影响,并在加药条件下对细胞进行神经诱导。结果:在细胞活力相近的状况下,CHIR99021更能促进细胞分裂增殖和向神经元样细胞分化的能力,而免疫荧光结果显示,CHIR99021对Wnt通路的起效时间比氯化锂更为迟缓。结论:GSK-3β受抑制可促进间充质干细胞向神经细胞分化。在低浓度条件下,CHIR99021的抑制作用起效比氯化锂缓慢,但作用延续时间比氯化锂更长,因而对神经分化的长期促进作用也更加明显。  相似文献   

10.
Embryonic stem cells (ESCs) can contribute to the tissues of chimeric animals, including the germline. By contrast, epiblast stem cells (EpiSCs) barely contribute to chimeras. These two types of cells are established and maintained under different culture conditions. Here, we show that a modified EpiSC culture condition containing the GSK3 inhibitor CHIR99021 can support a germline-competent pluripotent state that is intermediate between ESCs and EpiSCs. When ESCs were cultured under a modified condition containing bFGF, Activin A, and CHIR99021, they converted to intermediate pluripotent stem cells (INTPSCs). These INTPSCs were able to form teratomas in vivo and contribute to chimeras by blastocyst injection. We also induced formation of INTPSCs (iINTPSCs) from mouse embryonic fibroblasts by exogenous expression of four reprogramming factors, Oct3/4, Sox2, Klf4, and c-Myc, under the INTPSC culture condition. These iINTPSCs contributed efficiently to chimeras, including the germline, by blastocyst injection. The INTPSCs exhibited several characteristic properties of both ESCs and EpiSCs. Our results suggest that the modified EpiSC culture condition can support growth of cells that meet the most stringent criteria for pluripotency, and that germline-competent pluripotency may depend on the activation state of Wnt signaling.  相似文献   

11.
Porcine induced pluripotent stem cells (iPSCs) provide useful information for translational research. The quality of iPSCs can be assessed by their ability to differentiate into various cell types after chimera formation. However, analysis of chimera formation in pigs is a labor‐intensive and costly process, necessitating a simple evaluation method for porcine iPSCs. Our previous study identified mouse embryonic stem cell (ESC)‐specific hypomethylated loci (EShypo‐T‐DMRs), and, in this study, 36 genes selected from these were used to evaluate porcine iPSC lines. Based on the methylation profiles of the 36 genes, the iPSC line, Porco Rosso‐4, was found closest to mouse pluripotent stem cells among 5 porcine iPSCs. Moreover, Porco Rosso‐4 more efficiently contributed to the inner cell mass (ICM) of blastocysts than the iPSC line showing the lowest reprogramming of the 36 genes (Porco Rosso‐622‐14), indicating that the DNA methylation profile correlates with efficiency of ICM contribution. Furthermore, factors known to enhance iPSC quality (serum‐free medium with PD0325901 and CHIR99021) improved the methylation status at the 36 genes. Thus, the DNA methylation profile of these 36 genes is a viable index for evaluation of porcine iPSCs. genesis 51:763–776. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
13.
Induced pluripotent stem cells (iPSCs) were first generated from mouse embryonic fibroblasts in the year 2006. These cells resemble the typical morphology of embryonic stem cells, express pluripotency markers, and are able to transmit through germlines. To date, iPSCs of many species have been generated, whereas generation of bat iPSCs (biPSCs) has not been reported. To facilitate in-depth study of bats at the molecular and cellular levels, we describe the successful derivation of biPSCs with a piggyBac (PB) vector that contains eight reprogramming factors Oct4, Sox2, Klf4, Nanog, cMyc, Lin28, Nr5a2, and miR302/367. These biPSCs were cultured in media containing leukemia inhibitory factor and three small molecule inhibitors (CHIR99021, PD0325901, and A8301). They retained normal karyotype, displayed alkaline phosphatase activity, and expressed pluripotency markers Oct4, Sox2, Nanog, TBX3, and TRA-1-60. They could differentiate in vitro to form embryoid bodies and in vivo to form teratomas that contained tissue cells of all three germ layers. Generation of biPSCs will facilitate future studies on the mechanisms of antiviral immunity and longevity of bats at the cellular level.  相似文献   

14.
15.
16.
Embryonic stem cells and induced pluripotent stem (iPS) cells are usually maintained on feeder cells derived from mouse embryonic fibroblasts (MEFs). In recent years, the cell culture of iPS cells under serum- and feeder-free conditions is gaining attention in overcoming the biosafety issues for clinical applications. In this study, we report on the use of multiple small-molecular inhibitors (i.e., CHIR99021, PD0325901, and Thiazovivin) to efficiently cultivate mouse iPS cells without feeder cells in a chemically-defined and serum-free condition. In this condition, we showed that mouse iPS cells are expressing the Nanog, Oct3/4, and SSEA-1 pluripotent markers, indicating that the culture condition is optimized to maintain the pluripotent status of iPS cells. Without these small-molecular inhibitors, mouse iPS cells required the adaptation period to start the stable cell proliferation. The application of these inhibitors enabled us the shortcut culture method for the cellular adaptation. This study will be useful to efficiently establish mouse iPS cell lines without MEF-derived feeder cells.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号