首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Fatty acid binding protein 4 (FABP4) is a novel tumor regulator that is abnormally expressed in many human cancers. In our study, upregulated microRNA-211 (miR-211) and reduced FABP4 expression were detected in colorectal cancer (CRC) patients and CRC cells. Mimic miR-211 or anti-miR-211 were transfected to investigate the effects of miR-211 on SW480 cells. The results showed that miR-211 promoted but anti-miR-211 inhibited cell migration, invasion, and epithelial–mesenchymal transition (EMT) of SW480 cells. Luciferase activity was decreased after cotransfection with miR-211 and WT-FABP4-UTR in SW480 cells. And reduced FABP4 protein expression by miR-211 indicated that FABP4 was the targeted gene of miR-211. miR-211 inhibited the activation of peroxisome proliferator-activated receptor (PPAR) γ, whereas overexpression of FABP4 reversed that effect. Finally, FABP4 inhibited the migration, invasion, and EMT of SW480 cells, whereas PPARγ agonist reversed the effects of FABP4. Thus, the miR-211/FABP4/PPARγ axis may be a novel target for CRC therapy.  相似文献   

2.
microRNAs (miRNAs) are noncoding RNAs that regulates the expression of target messenger RNAs (mRNAs). c-FLIP is an inhibitor of cell apoptosis through inhibition of caspase 8. miR-150, miR-504, and miR-519d were related to cancer cell proliferation, invasion, and migration in colorectal cancer (CRC). However, the role of miR-150-504-519d in CRC has not been studied and the relationship between miR-150-504-519d and c-FLIP remains unclear. In this study, we found that c-FLIP was upregulated in CRC tissues, without detectable expression in normal CRC tissues. Using SW48 cell line, we further showed that miR-150-504-519d inhibited migration, invasion, and promoted apoptosis of SW48 cells. Moreover, in SW48 cell line transfected with miR-150-504-519d, the protein expression of c-FLIP was significantly lower compared with cells transfected with scramble. Our results demonstrated upregulation of c-FLIP in CRC, which was downregulated in SW48 cells after the transfection of miR-150-504-519d, suggesting that manipulation of miR-150-504-519d expression might be a novel approach for the treatment of colorectal cancer.  相似文献   

3.
Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normal human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway.  相似文献   

4.
In this work, we aimed to determine the expression and biological functions of microRNA (miR)‐577 in colorectal cancer (CRC). The results showed that miR‐577 was downregulated in CRC specimens and cell lines. Restoration of miR‐577 significantly suppressed the proliferation and colony formation and induced a G0/G1 cell cycle arrest in CRC cells. 5‐Fluorouracil (5‐FU)‐resistant SW480 cells (SW480/5‐FU) were found to have elevated levels of miR‐577. Ectopic expression of miR‐577 enhanced 5‐FU sensitivity in SW480/5‐FU cells. Heat shock protein 27 (HSP27) was identified as a target gene of miR‐577. Enforced expression of HSP27 reversed the effects of miR‐577 on CRC cell growth and 5‐FU sensitivity. Xenograft tumors derived from miR‐577‐overexpressing SW480 cells exhibited significantly slower growth than control tumors. In conclusion, our results support that miR‐577 acts as a tumor suppressor in CRC likely through targeting HSP27. Therefore, miR‐577 may have therapeutic potential in the treatment of CRC.  相似文献   

5.
6.
A number of cancers show increased expression of Nicotinamide phosphoribosyl transferase (Nampt). However, the mechanism through which Nampt is upregulated is unclear. In our study, we found that the Nampt-specific chemical inhibitor FK866 significantly inhibited cell survival and reduced nicotinamide adenine dinucleotide (NAD) levels in LoVo and SW480 cell lines. Bioinformatics analyses suggested that miR-26b targets Nampt mRNA. We identified Nampt as a new target of miR-26b and demonstrated that miR-26b inhibits Nampt expression at the protein and mRNA levels by binding to the Nampt 3′-UTR. Moreover, we found that miR-26b was down regulated in cancer tissues relative to that in adjacent normal tissues in 18 colorectal cancer patients. A statistically significant inverse correlation between miR-26b and Nampt expression was observed in samples from colorectal cancer patients and in 5 colorectal cell lines (HT-29, SW480, SW1116, LoVo, and HCT116). In addition, over expression of miR-26b strongly inhibited LoVo cell survival and invasion, an effect partially abrogated by the addition of NAD. In conclusion, this study demonstrated that the NAD-salvaging biosynthesis pathway involving Nampt might play a role in colorectal cancer cell survival. MiR-26b may serve as a tumor suppressor by targeting Nampt.  相似文献   

7.
Exosomes are extracellular membrane vesicles of 50- to 130-nm diameter secreted by most tumor cells. Exosomes can mediate the intercellular transfer of proteins and RNAs, including microRNAs (miRNAs), and promote both tumorigenesis and premetastatic niche formation. In this study, we performed exosomal RNA sequencing to identify candidate exosomal miRNAs that could be associated with colorectal cancer (CRC) and its distant metastasis. The expression profiles of exosomal miRNA, as secreted by isogenic human primary CRC cell line SW480 and highly metastatic cell line SW620, were analyzed and the potential targets related to tumorigenesis and metastatic progression were investigated. We found that 25 miRNAs had been up-regulated and 5 miRNAs had been down-regulated in exosomes purified from SW620 culture supernatant. Candidate miRNAs were further evaluated for CRC diagnosis using quantitative real-time polymerase chain reaction in CRC patients. Higher expression levels of circulating exosomal miR-17-5p and miR-92a-3p were significantly associated with pathologic stages and grades of the CRC patients. CONCLUSIONS: Circulating exosomal miR-17-5p and miR-92a-3p may provide a promising noninvasive prognostic biomarker for primary and metastatic CRC.  相似文献   

8.
9.
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and second in females worldwide. Unfortunately 40-50% of patients already have metastatic disease at presentation when prognosis is poor with a 5-year survival of <10%. Reactive oxygen species (ROS) have been proposed to play a crucial role in tumor metastasis. We now show that higher levels of ROS accumulation are found in a colorectal cancer-derived metastatic cell line (SW620) compared with a cell line (SW480) derived from the primary lesion from the same patient. In addition, ROS accumulation can affect both the migratory and invasive capacity of SW480 and SW620 cells. To explore the molecular mechanism underlying ROS-induced migration and invasion in CRC, we have compared protein expression patterns between SW480 and SW620 cells using a two-dimensional electrophoresis-based proteomics strategy. A total of 63 altered proteins were identified from tandem MS analysis. Cluster analysis revealed dysregulated expression of multiple redox regulative or ROS responsive proteins, implicating their functional roles in colorectal cancer metastasis. Molecular and pathological validation demonstrated that altered expression of PGAM1, GRB2, DJ-1, ITGB3, SOD-1, and STMN1 was closely correlated with the metastatic potential of CRC. Functional studies showed that ROS markedly up-regulated expression of ITGB3, which in turn promoted an aggressive phenotype in SW480 cells, with concomitant up-regulated expression of STMN1. In contrast, knockdown of ITGB3 expression could mitigate the migratory and invasive potential of SW620 or H(2)O(2)-treated SW480 cells, accompanied by down-regulated expression of STMN1. The function of ITGB3 was dependent on the surface expression of integrin αvβ3 heterodimer. Furthermore, STMN1 expression and the PI3K-Akt-mTOR pathway were found to be involved in ROS-induced and ITGB3-mediated migration and invasion of colorectal cancer cells. Taken together, these studies suggest that ITGB3 plays an important role in ROS-induced migration and invasion in CRC.  相似文献   

10.
Matrine, an alkaloid compound isolated from Sophora flavescens Ait, has been shown to exert cancer-killing actions in a variety of tumors; however, its anticancer mechanism in colorectal cancer (CRC) is not clear. The goal of our study was to characterize the anticancer effects and molecular mechanisms of matrine in SW480 CRC cells in vitro. Matrine treatment reduced mitochondrial metabolic function and ATP levels, repressed mitochondrial membrane potential, evoked mitochondrial reactive oxygen species accumulation, and promoted cyt-c-related mitochondrial apoptosis activation. In addition, we found that matrine treatment activated mitochondrial fission through upregulating mitochondrial elongation factor 1 (MIEF1); silencing of MIEF1 prevented matrine-mediated mitochondrial damage and reversed the decrease in SW480 cell viability. Moreover, matrine treatment affected MIEF1 expression via the large tumor suppressor-2 (LATS2)-Hippo axis, and LATS2 deficiency suppressed the anticancer actions exerted by matrine on SW480 cancer cells. In summary, we show for the first time that matrine inhibits SW480 cell survival by activating MIEF1-related mitochondrial division via the LATS2-Hippo pathway. These findings explain the anticancer mechanisms of matrine in CRC and also identify the LATS2-MIEF1 signaling pathway as an effective target for the treatment of CRC.  相似文献   

11.
Colorectal cancer (CRC) is the second most common gastrointestinal cancer globally. Prevention of tumor cell proliferation and metastasis is vital for prolonging patient survival. Polyphenols provide a wide range of health benefits and prevention from cancer. In the gut, urolithins are the major metabolites of polyphenols. The objective of our study was to elucidate the molecular mechanism of the anticancer effect of urolithin A (UA) on colorectal cancer cells. UA was found to inhibit the cell proliferation of CRC cell lines in a dose-dependent and time-dependent manner in HT29, SW480, and SW620 cells. Exposure to UA resulted in cell cycle arrest in a dose-dependent manner along with alteration in the expression of cell cycle–related protein. Treatment of CRC cell lines with UA resulted in the induction of apoptosis. Treatment of HT29, SW480, and SW620 with UA resulted in increased expression of the pro-apoptotic proteins, p53 and p21. Similarly, UA treatment inhibited the anti-apoptotic protein expression of Bcl-2. Moreover, exposure of UA induced cytochrome c release and caspase activation. Furthermore, UA was found to generate reactive oxygen species (ROS) production in CRC cells. These findings indicate that UA possesses anticancer potential and may be used therapeutically for the treatment of CRC.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-020-01189-8.  相似文献   

12.
The role of miR-19a in colorectal cancer (CRC), a devastating disease with high mortality and morbidity, remains controversial. In the present study, we show that the level of miR-19a is significantly higher in clinical CRC tissue samples than in paracancerous tissue samples, and significantly higher in CRC cells lines HT29, SW480, and CaCO2 than in the normal human colon mucosal epithelial cell line NCM460. miR-19a mimics and inhibitors were synthesized and validated. Overexpression of miR-19a mimics significantly promoted, while miR-19a inhibitors inhibited, the proliferation, survival, migration, and invasion of SW480 and CaCO2 CRC cells. Furthermore, mRNA and protein levels of chloride channel accessory 4 (CLCA4) were lower in CRC cells and tissues. Bioinformatics and a luciferase reporter assay confirmed that CLCA4 was a miR-19a target. Further, miR-19a inhibition increased CLCA4 expression. The inhibitory effect of miR-19a on cell growth, survival, migration, and invasion was reversed by knockdown of CLCA4 expression. The data demonstrated that the miR-19a/CLCA4 axis modulates phospho-activation of the PI3K/AKT pathway in CRC cells. In conclusion, our results revealed that miR-19a overexpression decreases CLCA4 levels to promote CRC oncogenesis, suggesting that miR-19a inhibitors have potential applications for future therapeutic of CRC.Key words: Colorectal cancer, miR-19a, CLCA4, proliferation, migration, invasion  相似文献   

13.
Extracellular vesicles comprise two main classes - exosomes and shed microvesicles (sMVs). Whilst much is known about exosome cargo content and functionality, sMVs are poorly understood. Here, we describe the large-scale purification of sMVs released from primary (SW480) and metastatic (SW620) human isogenic colorectal cancer (CRC) cell lines using a combination of differential ultracentrifugation and isopycnic iodixanol density centrifugation. The yield of SW480-sMVs and SW620-sMVs was 0.75 mg and 0.80 mg, respectively. Both SW480-/SW620-sMVs are heterogeneous in size (100–600 nm diameter) and exhibit identical buoyant densities (1.10 g/mL). In contrast to exosomes, sMVs are ALIX, TSG101, CD63 and CD9. Quantitative mass spectrometry identified 1295 and 1300 proteins in SW480-sMVs and SW620-sMVs, respectively. Gene Ontology enrichment analysis identified ‘cell adhesion’ (CDH1, OCLN, CTN families), ‘signalling pathway’ (KRAS, NRAS, MAPK1, MAP2K1), and ‘translation/RNA related’ processes (EIF, RPL, HNRNP families) in both sMV types. Strikingly, SW480- and SW620-sMVs exhibit distinct protein signatures - SW480-sMVs being enriched in ITGA/B, ANXA1, CLDN7, CD44 and EGFR/NOTCH signalling networks, while SW620-sMVs are enriched in PRKCA, MACC1, FGFR4 and MTOR/MARCKS signalling networks. Both SW480- and SW620-sMVs are taken up by NIH3T3 fibroblasts resulting in similar cell invasion capability. This study provides, for the first time, molecular insights into sMVs and CRC biology.  相似文献   

14.
摘要 目的:本文旨在研究长链非编码RNA XIST-miR137-ATG5的相互作用,同时探讨其调节细胞自噬功能与肠癌细胞5-氟胞嘧啶敏感性的关系。方法:实时聚合酶链反应(real time PCR)检测XIST与miR-137在肠癌细胞中的表达;采用脂质体转染法将si-XIST,miR-137转染入肠癌SW480及HCT116细胞中。采用CCK-8检测瞬时转染si-XIST对肠癌细胞增殖及5-FU敏感性的影响;并利用双荧光素酶报告实验检测miR-137与XIST, miR-137与ATG5相互关系。Western blot方法检测XIST- miR137- ATG5对细胞自噬的影响。结果:与正常结肠细胞FHC比较, XIST在结肠癌细胞系明显高表达,miR-137在结肠癌细胞系明显低表达。与阴性对照组比较,转染si-XIST后,SW480及HCT116细胞增殖能力明显受到抑制,对F-5U的敏感性增强,且抑制自噬蛋白Beclin-1及LC3II/LC3 I的表达。miR-137可与XIST,ATG5 3''UTR结合,抑制XIST和ATG5的表达及功能。在结肠癌SW480细胞中共转染miR-137 inhibitor或过表达ATG5可逆转XIST沉默引起的5-FU耐药,同时可逆转因XIST沉默引起的自噬蛋白表达的抑制。结论:LncRNA XIST或可通过调控mir137-ATG促进结直肠癌细胞SW480自噬从而提高其对5-FU的耐药,针对其这一机制,可为将来针对结肠癌的靶向治疗提供一定的实验基础。  相似文献   

15.
16.
Colorectal cancer (CRC) is a major cause of morbidity and mortality throughout the world. Apigenin is a flavonoid that possesses various clinically relevant properties such as anti-tumour, anti-platelet and anti-inflammatory activities. Our results showed that apigenin has anti-proliferation, anti-invasion and anti-migration effects in three kinds of colorectal adenocarcinoma cell lines, namely SW480, DLD-1 and LS174T. Proteomic analysis with SW480 indicated that apigenin up-regulated the expression of transgelin (TAGLN) in mitochondria to exert its anti-tumour growth and anti-metastasis effects. Real-time quantitative polymerase chain reaction (RQ-PCR) and western blot confirm the up-regulation in all the three colorectal adenocarcinoma cells. An inverse correlation was observed between TAGLN expression and CRC metastasis in tissue microarray staining. TAGLN siRNA increased the viability of SW480. Apigenin decreased the expression of MMP-9 in a dose-dependent manner. Transfection of three truncated forms of TAGLN and wild type has identified TAGLN as a repressor of MMP-9 expression. A synergetic effect was observed in overexpression of TAGLN wild type and apigenin treatment which manifested as lowered phosphorylation of AKT Ser473 and ATK Thr308. In an orthotopic CRC model, apigenin inhibited tumour growth and metastasis to liver and lung. In conclusion, our research provided direct evidence that apigenin inhibited tumour growth and metastasis both in vitro and in vivo. Apigenin up-regulated TAGLN and hence down-regulated MMP-9 expression through decreasing phosphorylation of Akt at Ser473 and in particular Thr308 to prevent cell proliferation and migration.  相似文献   

17.
18.
BackgroundMicroRNAs (miRNAs) are strongly implicated in carcinogenesis, but their specific roles in the major cancers have yet to be fully elucidated.MethodsThe expression levels of miR-139 in colorectal carcinoma and paired normal tissues were examined using real-time PCR assays. Potential functions of miR-139 were evaluated in colorectal carcinoma cell lines (SW480, SW620, LS174 T, and HCT116) using miR-139 mimics, anti-miR-139, and siRNA RAP1B.ResultsIn this study, we determined that miR-139 is down-regulated in colorectal carcinoma (CRC) tissues. Lower miR-139 expression correlates with more advanced CRC and lower overall survival of patients with CRC. The ectopic expression of miR-139 in human CRC cells decreased cell growth and tumorigenicity, whereas the silencing of miR-139 promoted cell growth. Mechanistic studies revealed that miR-139 repressed the activity of a reporter gene fused to the 3′-untranslated region of RAP1B, whereas miR-139 silencing up-regulated the expression of the reporter gene. RNAi-mediated knockdown of RAP1B phenocopied the antiproliferative effect of miR-139, whereas the overexpression of RAP1B blocked miR-139-mediated antiproliferative effects in CRC cells.ConclusionsTaken together, these results demonstrated that miR-139 decreases proliferation by directly targeting RAP1B, defining miR-139 as a new putative tumour suppressor miRNA in CRC.  相似文献   

19.
The proteomic effects of specific cancer-related mutations have not been well characterized. In colorectal cancer (CRC), a relatively small number of mutations in key signaling pathways appear to drive tumorigenesis. Mutations in adenomatous polyposis coli (APC), a negative regulator of Wnt signaling, occur in up to 60% of CRC tumors. Here we examine the proteomic consequences of a single gene mutation by using an isogenic CRC cell culture model in which wildtype APC expression has been ectopically restored. Using LC-MS/MS label free shotgun proteomics, over 5000 proteins were identified in SW480Null (mutant APC) and SW480APC (APC restored). We observed 155 significantly differentially expressed proteins between the two cell lines, with 26 proteins showing opposite expression trends relative to gene expression measurements. Protein changes corresponded to previously characterized features of the APCNull phenotype: loss of cell adhesion proteins, increase in cell cycle regulators, alteration in Wnt signaling related proteins, and redistribution of β-catenin. Increased expression of RNA processing and isoprenoid biosynthetic proteins occurred in SW480Null cells. Therefore, shotgun proteomics reveals proteomic differences associated with a single gene change, including many novel differences that fall outside known target pathways.  相似文献   

20.
Colorectal cancer (CRC) is a common disease with high mortality and morbidity. Annexin A3 (ANXA3) belongs to the structurally homologous family of Ca2+ and phospholipid-binding proteins. This study aimed to investigate the effects and potential mechanisms of ANXA3 on oxaliplatin (Ox) resistance in CRC. We generated two human CRC cell lines (HCT116/Ox and SW480/Ox) with acquired Ox resistance and determined their resistance properties. ANXA3 expression and cell apoptosis, migration and invasion also were evaluated. We found that cell viability of HCT116/Ox and SW480/Ox was higher than that in parental cells in the presence of Ox. ANXA3 was highly expressed in HCT116/Ox and SW480/Ox cells. ANXA3 downregulation diminished cell survival, migration and invasion, while increased the apoptosis of HCT116 and SW480 with or without Ox. Moreover, depletion of ANXA3 reduced cell viability and BrdU incorporation, increased cell apoptosis and c-caspase 3 expression in HCT116/Ox with or without Ox. A transwell assay determined that knockdown of ANXA3 impeded the migration and invasion of HCT116/Ox and SW480/Ox cells. Additionally, phosphorylation of extracellular signal–regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) decreased upon ANXA3 depletion in HCT116/Ox cells, and ANXA3 silencing suppressed Ox-induced activation of ERK and JNK signaling pathway. ANXA3 downregulation reduced Ox resistance in CRC, and treatment with the ERK inhibitor PD098059 or JNK inhibitor SP600125 contributed to this process. These results indicate that silencing ANXA3 could overcome Ox resistance in CRC via the mitogen-activated protein kinase signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号