首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The tumor microenvironment is highly correlated with tumor occurrence, progress, and prognosis. We aimed to investigate the immune-related gene (IRG) expression and immune infiltration pattern in the tumor microenvironment of lower-grade glioma (LGG). We employed the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm to calculate immune and stromal scores and identify prognostic IRG based on The Cancer Genome Atlas data set. The potential molecular functions of these genes were explored with the help of functional enrichment analysis and the protein–protein interaction network. Remarkably, three cohorts that were downloaded from the Chinese Glioma Genome Atlas database were analyzed to further verify the prognostic values of these genes. Moreover, the Tumor IMmune Estimation Resource (TIMER) algorithm was used to estimate the abundance of infiltrating immune cells and explore the immune infiltration pattern in LGG. And unsupervised cluster analysis determined three clusters of the immune infiltration pattern and indicated that CD8+ T cells and macrophages were significantly associated with LGG outcomes. Altogether, our study identified a list of prognostic IRGs and provided a perspective to explore the immune infiltration pattern in LGG.  相似文献   

2.
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney tumor. Previous studies have shown that the interaction between tumor cells and microenvironment has an important impact on prognosis. Immune and stromal cells are two vital components of the tumor microenvironment. Our study aimed to better understand and explore the genes involved in immune/stromal cells on prognosis. We used the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data algorithm to calculate immune/stromal scores. According to the scores, we divided ccRCC patients from The Cancer Genome Atlas database into low and high groups and identified the genes which were differentially expressed and significantly associated with prognosis. The result of functional enrichment analysis and protein-protein interaction networks indicated that these genes mainly were involved in extracellular matrix and regulation of cellular activities. Then another independent cohort from the International Cancer Genome Consortium database was used to validate these genes. Finally, we acquired a list of microenvironment-related genes that can predict prognosis for ccRCC patients.  相似文献   

3.
Given no reliable therapy for advanced malignant melanoma, it is important to elucidate the molecular mechanisms underlying the disease progression. Using a quantitative proteomics approach, the ‘isobaric tags for relative and absolute quantitation (iTRAQ)’ method, we identified that the extracellular matrix protein, periostin (POSTN), was highly expressed in invasive melanoma compared with normal skin. An immunohistochemical analysis showed that POSTN was expressed in all invasive melanoma (n = 20) and metastatic lymph node (n = 5) tissue samples, notably restricted in their stroma. In terms of the intercellular regulation of POSTN, we found that there was upregulation of POSTN when melanoma cells and normal human dermal fibroblasts (NHDFs) were cocultured, with restricted expression of TGF‐β1 and TGF‐β3. In a functional analyses, recombinant and NHDF‐derived POSTN significantly accelerated melanoma cell proliferation via the integrin/mitogen‐activated protein kinase (MAPK) signaling pathway in vitro. The size of implanted melanoma tumors was significantly suppressed in POSTN/Rag2 double knockout mice compared with Rag2 knock‐out mice. These results indicate that NHDF‐derived POSTN accelerates melanoma progression and might be a promising therapeutic target for malignant melanoma.  相似文献   

4.
One characteristic of solid tumors such as malignant melanoma is the acidification of the tumor microenvironment. The deregulation of cancer cell metabolism is considered a main cause of extracellular acidosis. Here, cancer cells utilize aerobic glycolysis instead of oxidative phosphorylation even under normoxic conditions, as originally described by Otto Warburg. These metabolic alterations cause enhanced acid production, especially of lactate and carbon dioxide (CO2). The extensive production of acidic metabolites and the enhanced acid export to the extracellular space cause a consistent acidification of the tumor microenvironment, thus promoting the formation of an acid‐resistant tumor cell population with increased invasive and metastatic potential. As melanoma is one of the deadliest and most metastatic forms of cancer, understanding the effects of this extracellular acidosis on human melanoma cells with distinct metastatic properties is important. The aim of this review was to summarize recent studies of the acidification of the tumor microenvironment, focusing on the specific effects of the acidic milieu on melanoma cells and to give a short overview of therapeutic approaches.  相似文献   

5.
Skin cutaneous melanoma (SKCM) is one of the most destructive skin malignancies and has attracted worldwide attention. However, there is a lack of prognostic biomarkers, especially tumour microenvironment (TME)-based prognostic biomarkers. Therefore, there is an urgent need to investigate the TME in SKCM, as well as to identify efficient biomarkers for the diagnosis and treatment of SKCM patients. A comprehensive analysis was performed using SKCM samples from The Cancer Genome Atlas and normal samples from Genotype-Tissue Expression. TME scores were calculated using the ESTIMATE algorithm, and differential TME scores and differentially expressed prognostic genes were successively identified. We further identified more reliable prognostic genes via least absolute shrinkage and selection operator regression analysis and constructed a prognostic prediction model to predict overall survival. Receiver operating characteristic analysis was used to evaluate the diagnostic efficacy, and Cox regression analysis was applied to explore the relationship with clinicopathological characteristics. Finally, we identified a novel prognostic biomarker and conducted a functional enrichment analysis. After considering ESTIMATEScore and tumour purity as differential TME scores, we identified 34 differentially expressed prognostic genes. Using least absolute shrinkage and selection operator regression, we identified seven potential prognostic biomarkers (SLC13A5, RBM24, IGHV3OR16-15, PRSS35, SLC7A10, IGHV1-69D and IGHV2-26). Combined with receiver operating characteristic and regression analyses, we determined PRSS35 as a novel TME-based prognostic biomarker in SKCM, and functional analysis enriched immune-related cells, functions and signalling pathways. Our study indicated that PRSS35 could act as a potential prognostic biomarker in SKCM by investigating the TME, so as to provide new ideas and insights for the clinical diagnosis and treatment of SKCM.  相似文献   

6.
The tumor microenvironment: a critical determinant of neoplastic evolution   总被引:2,自引:0,他引:2  
Evolution of neoplastic cells has generally been regarded as a cumulative intrinsic process resulting in altered cell characteristics enabling enhanced growth properties, evasion of apoptotic signals, unlimited replicative potential and gain of properties enabling the ability to thrive in ectopic tissues and in some cases, ability to metastasize. Recently however, the role of the neoplastic microenvironment has become appreciated largely due to the realization that tumors are not merely masses of neoplastic cells, but instead, are complex tissues composed of both a non-cellular (matrix proteins) and a cellular 'diploid' component (tumor-associated fibroblasts, capillary-associated cells and inflammatory cells), in addition to the ever-evolving neoplastic cells. With these realizations, it has become evident that early and persistent inflammatory responses observed in or around many solid tumors, play important roles in establishing an environment suitable for neoplastic progression by providing diverse factors that alter tissue homeostasis. Using cutaneous melanoma and squamous cell carcinoma as tumor models, we review the current literature focussing on inflammatory and tumor-associated fibroblast responses as critical mediators of neoplastic progression for these malignancies.  相似文献   

7.
Melanomas are metabolically heterogeneous, and they are able to adapt in order to utilize a variety of fuels that facilitate tumor progression and metastasis. The significance of metabolism in melanoma is supported by growing evidence of impact on the efficacy of contemporary therapies for this disease. There are also data to support that the metabolic phenotypes of melanoma cells depend upon contributions from both intrinsic oncogenic pathways and extrinsic factors in the tumor microenvironment. This review summarizes current understanding of the metabolic processes that promote cutaneous melanoma tumorigenesis and progression, the regulation of cancer cell metabolism by the tumor microenvironment, and the impact of metabolic pathways on targeted and immune therapies.  相似文献   

8.
BackgroundSpindle and Kinetochore Associated Complex Subunit 3 (SKA3) is a part of the SKA complex, which plays a key role in cell mitosis. Studies have shown that SKA3 was associated with cancer progression. However, its role in skin cutaneous melanoma (SKCM) remains unclear. Here, we investigated the expression level and prognostic value of SKA3 in SKCM.MethodsBased on public databases, univariate and multivariate Cox regression analyses were used to investigate the different expression of SKA3 between SKCM and normal tissues. Then, the relationship between SKA3 expression level and prognosis was assessed. PPI network and functional enrichment analysis were performed. ESTIMATE and CIBERSORT were expected to evaluate the SKA3 expression and immune status. CCK8, wound healing, transwell assays and tumor xenograft trial were performed to detect the SKA3 function in cell viability, migration and invasion of the cell lines.ResultsThe SKA3 was highly expressed in SKCM tissues. SKA3 overexpression was associated with poor survival and immune status. SKA3 knockdown inhibited cell viability, migration and invasion of SKCM cells.ConclusionSKA3 is involved in the progression of SKCM and may serve as a new prognostic biomarker and therapeutic target.  相似文献   

9.
Recent studies have shown that a loss of methylthioadenosine phosphorylase (MTAP) gene expression exerts a tumor‐promoting effect, including induction of invasiveness, enhanced cell proliferation, and resistance against cytokines. To date, the molecular mechanisms underlying these effects remain unknown. Since the loss of MTAP expression resulted in induced secretion of 5′‐deoxy‐5′‐(methylthio)adenosine (MTA), we hypothesized that MTA might modulate the observed effects. We first determined MTA levels produced by tumor cells in vitro and in situ by means of stable isotope dilution liquid chromatography tandem mass spectrometry. Subsequently, we revealed induction of matrix metalloproteinase (MMP) and growth factor gene expression in melanoma cells accompanied by enhanced invasion and vasculogenic mimicry. In addition, MTA induced the secretion of basis fibroblast growth factor (bFGF) and MMP3 from fibroblasts and the upregulation of activator protein‐1 (AP‐1) activity in melanoma cells and fibroblasts. In summary, we demonstrated a tumor‐supporting role of MTA. J. Cell. Biochem. 106: 210–219, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
Autophagy is involved in cancer initiation and progression but its role in uveal melanoma (UM) was rarely investigated. Herein, we built an autophagy-related gene (ARG) risk model of UM patients by univariate Cox regression and least absolute shrinkage and selection operator (Lasso) regression model and filtrated out nine prognostic ARGs in The Cancer Genome Atlas (TCGA) cohort. Survival and Receiver Operating Characteristic (ROC) Curve analysis in the TCGA and other four independent UM cohorts (GSE22138, GSE27831, GSE44295 and GSE84976) proved that the ARG-signature possessed robust and steady prognosis predictive ability. We calculated risk scores for patients included in our study and patients with higher risk scores showed worse clinical outcomes. We found the expressions of the nine ARGs were significantly associated with clinical and molecular features (including risk score) and overall survival (OS) of UM patients. Furthermore, we utilized univariate and multivariate Cox regression analyses to determine the independent prognostic ability of the ARG-signature. Functional enrichment analysis showed the ARG-signature was correlated with several immune-related processes and pathways like T-cell activation and T-cell receptor signaling pathway. Gene set enrichment analysis (GSEA) found tumor hallmarks including angiogenesis, IL6-JAK-STAT3-signaling, reactive oxygen species pathway and oxidative phosphorylation were enriched in high-risk UM patients. Finally, infiltrations of several immune cells and immune-related scores were found significantly associated with the ARG-signature. In conclusion, the ARG-signature might be a strong predictor for evaluating the prognosis and immune infiltration of UM patients.  相似文献   

11.
Breast carcinoma (BRCA) is the most common carcinoma among women worldwide. Despite the great progress achieved in early detection and treatment, morbidity and mortality rates remain high. In the present study, we make a systematic analysis of BRCA using TCGA database by applying CIBERSORT and ESTIMATE computational methods, uncovered CD3D as a prognostic biomarker by intersection analysis of univariate COX and protein–protein interaction (PPI). It revealed that high CD3D expression was strongly associated with poor survival of BRCA, based on The Cancer Genome Atlas (TCGA) database and online websites. Gene Set Enrichment Analysis (GSEA) revealed that the high CD3D expression group was mainly enriched for the immune-related pathways and the low CD3D expression group was mainly enriched for metabolic-related activities. Based on CIBERSORT analysis, the difference test and correlation test suggested that CD3D had a strong correlation with T cells, particularly CD8 + T cells, which indicated that CD3D up-regulation may increase T cell immune infiltration in the TME and induce antitumor immunity by activating T lymphocytes. Furthermore, the correlation analysis showed that CD3D expression had a strongly positive correlation with immune checkpoints, which indicating that the underlying mechanism involves CD3D mediated regulation of T cell functions in BRCA, and single cell RNA-seq analysis revealed that CD3D correlate with CD8 + T cells and it is itself highly expressed in CD8 + T cells. In summary, we identified a prognostic biomarker CD3D in BRCA, which was associated with lymphocyte infiltration, immune checkpoints and could be developed for innovative therapeutics of BRCA.  相似文献   

12.
Ferroptosis is an iron-dependent, nonapoptotic form of regulated cell death triggered by impaired redox and antioxidant machinery and propagated by the accumulation of toxic lipid peroxides. A compendium of experimental studies suggests that ferroptosis is tumor-suppressive. Sensitivity or resistance to ferroptosis can be regulated by cell-autonomous and non-cell-autonomous metabolic mechanisms. This includes a role for ferroptosis that extends beyond the tumor cells themselves, mediated by components of the tumor microenvironment, including T cells and other immune cells. Herein, we review the intrinsic and extrinsic factors that promote the sensitivity of cancer cells to ferroptosis and conclude by describing approaches to harness the full utility of ferroptotic agents as therapeutic options for cancer therapy.  相似文献   

13.
A dynamic, complex relationship exists between tumor cells and their microenvironment, which plays a pivotal role in cancer progression, yet remains poorly understood. Particularly perplexing is the finding that aggressive melanoma cells express genes associated with multiple cellular phenotypes, in addition to their ability to form vasculogenic-like networks in three-dimensional matrix--called vasculogenic mimicry, which is illustrative of tumor cell plasticity. This study addressed the unique epigenetic effect of the microenvironment of aggressive melanoma cells on the behavior of poorly aggressive melanoma cells exposed to it. The data show significant changes in the global gene expression of the cells exposed to 3-D matrices preconditioned by aggressive melanoma cells, including the acquisition of a vasculogenic cell phenotype, upregulation of ECM remodeling genes, and increased invasive ability--indicative of an epigenetic, microenvironment-induced reprogramming of poorly aggressive melanoma cells. However, this epigenetic effect was completely abrogated when a highly cross-linked collagen matrix was used, which could not be remodeled by the aggressive melanoma cells. These findings offer an unique perspective of the inductive properties associated with an aggressive melanoma microenvironment that might provide new insights into the epigenetic regulation of tumor cell plasticity and differentiation, as well as mechanisms that could be targeted for novel therapeutic strategies.  相似文献   

14.
Cutaneous melanoma (CM) is an aggressive cancer; given that initial and specific signs are lacking, diagnosis is often late and the prognosis is poor. RNA modification has been widely studied in tumour progression. Nevertheless, little progress has been made in the signature of N1-methyladenosine (m1A), 5-methylcytosine (m5C), N6-methyladenosine (m6A)-related regulators and the tumour microenvironment (TME) cell infiltration in CM. Our study identified the characteristics of m1A-, m5C- and m6A-related regulators based on 468 CM samples from the public database. Using univariate, multivariate and LASSO Cox regression analysis, a risk model of regulators was established and validated by a nomogram on independent prognostic factors. The gene set variation analysis (GSVA) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) clarified the involved functional pathways. A combined single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT approach revealed TME of regulator-related prognostic signature. The nine-gene signature stratified the patients into distinct risk subgroups for personalized prognostic assessment. Additionally, functional enrichment, immune infiltration and immunotherapy response analysis indicated that the high-risk group was correlated with T-cell suppression, while the low-risk group was more sensitive to immunotherapy. The findings presented here contribute to our understanding of the TME molecular heterogeneity in CM. Nine m1A-, m5C- and m6A-related regulators may also be promising biomarkers for future research.  相似文献   

15.
Metastasis represents the end product of an elaborate biological process, which is determined by a complex interplay between metastatic tumour cells, host factors and homoeostatic mechanisms. Cutaneous melanoma can metastasize haematogenously or lymphogenously. The three predominant models that endeavour to explain the patterns of melanoma progression are the stepwise spread model, the simultaneous spread model and the model of differential spread. The time course to the development of metastases differs between the different metastatic routes. There are several clinical and histopathological risk factors for the different metastatic pathways. In particular, patient sex and the anatomical location of the primary tumour influence patterns of disease progression. There is limited existing evidence regarding the relationship between tumour mutation status, other diagnostic and prognostic biomarkers and the metastatic pathways of primary cutaneous melanoma. This knowledge gap needs to be addressed to better identify patients at high risk of disease recurrence and personalize surveillance strategies.  相似文献   

16.
The cancer microenvironment affects cancer cell proliferation and growth. Embryonic stem (ES)-preconditioned 3-dimensional (3-D) culture of cancer cells induces cancer cell reprogramming and results in a change in cancer cell properties such as differentiation and migration in skin melanoma. However, the mechanism has not yet been clarified. Using the ES-preconditioned 3-D microenvironment model, we provide evidence showing that the ES microenvironment inhibits proliferation and anchorage-independent growth of SK-MEL-28 melanoma cells. We also found that the ES microenvironment suppresses telomerase activity and thereby induces senescence in SK-MEL-28 cells. Furthermore, we observed that gremlin, an antagonist of BMP4, is secreted from ES cells and plays an important role in cellular senescence. Knocking down gremlin in the ES microenvironment increases proliferation and anchorage-independent growth of SK-MEL-28 melanoma cells. Taken together, these results demonstrated that gremlin is a crucial factor responsible for abrogating melanoma properties in the ES-preconditioned 3-D microenvironment.  相似文献   

17.
The deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with a high risk of mesothelioma and melanocytic tumors. Here, we show that Bap1 deletion in melanocytes cooperates with the constitutively active, oncogenic form of BRAF (BRAFV600E) and UV to cause melanoma in mice, albeit at very low frequency. In addition, Bap1‐null melanoma cells derived from mouse tumors are more aggressive and colonize and grow at distant sites more than their wild‐type counterparts. Molecularly, Bap1‐null melanoma cell lines have increased DNA damage measured by γH2aX and hyperubiquitination of histone H2a. Therapeutically, these Bap1‐null tumors are completely responsive to BRAF‐ and MEK‐targeted therapies. Therefore, BAP1 functions as a tumor suppressor and limits tumor progression in melanoma.  相似文献   

18.
The incidence of melanoma has increased dramatically over the last 50 yr, and although melanoma accounts for only 10% of all skin cancers, it is responsible for over 80% of skin cancer deaths. Recent studies have uncovered critical molecular events underlying melanocytic transformation and melanomagenesis. Among these noteworthy observations are the acquisition of stem cell-associated proteins, such as the Notch receptors and Nodal, which have also been implicated in melanoma progression. For example, we have demonstrated that Nodal expression is limited to invasive vertical growth phase and metastatic melanoma lesions, and that inhibition of Nodal signaling promotes the reversion of metastatic melanoma cells toward a more differentiated, less invasive non-tumorigenic phenotype. In addition, molecular cross-talk exists between the Notch and Nodal signaling pathways. Interestingly, the acquisition of stem cell-associated plasticity is often acquired via epigenetic mechanisms, and is therefore receptive to reprogramming in response to embryonic microenvironments. Here, we review the concept of melanoma plasticity, with an emphasis on the emerging role of Nodal as a regulator of melanoma tumorigenesis and progression, and present findings related to epigenetic reprogramming.  相似文献   

19.
In this study, we attempted to evaluate the prognostic value of infiltrating immune/stromal cells in clear cell renal cell carcinoma (ccRCC), by using the immune scores and stromal scores based on the “Estimation of STromal and Immune cells in MAlignant Tumours using Expression data” algorithm to represent the levels of infiltrating immune cells and stromal cells. We found that the infiltrating immune cells were associated with poor prognosis of ccRCC. To assess the role of infiltrating immune cells in ccRCC cells, first, we performed differentially expressed genes analysis and functional analysis for validation. The results showed that the underlying mechanism by which infiltrating immune cells promoted cancer progression involved in regulating the nuclear division, angiogenesis, and immune response. Next, we investigated the relationship between infiltrating immune cells and mutations in ccRCC cells. We found that the infiltrating immune cells have certain effects on genetic mutations. In conclusion, infiltrating immune cells within the tumor microenvironment can be used to predict prognosis in ccRCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号