首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In contrast to cell types in which exposure to hypoxia causes a general reduction of metabolic activity, a remarkable feature of pulmonary artery adventitial fibroblasts is their ability to proliferate in response to hypoxia. Previous studies have suggested that ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) are activated by hypoxia and play a role in a variety of cell responses. However, the pathways involved in mediating hypoxia-induced proliferation are largely unknown. Using pharmacological inhibitors, we established that PI3K-Akt, mTOR-p70 ribosomal protein S6 kinase (p70S6K), and EKR1/2 signaling pathways play a critical role in hypoxia-induced adventitial fibroblast proliferation. We found that exposure of serum-starved fibroblasts to 3% O2 resulted in a time-dependent activation of PI3K and transient phosphorylation of Akt. However, activation of PI3K was not required for activation of ERK1/2, implying a parallel involvement of these pathways in the proliferative response of fibroblasts to hypoxia. We found that hypoxia induced significant increases in mTOR, p70S6K, 4E-BP1, and S6 ribosomal protein phosphorylation, as well as dramatic increases in p70S6K activity. The activation of p70S6K/S6 pathway was sensitive to inhibition by rapamycin and LY294002, indicating that mTOR and PI3K/Akt are upstream signaling regulators. However, the magnitude of hypoxia-induced p70S6K activity and phosphorylation suggests involvement of additional signaling pathways. Thus our data demonstrate that hypoxia-induced adventitial fibroblast proliferation requires activation and interaction of PI3K, Akt, mTOR, p70S6K, and ERK1/2 and provide evidence for hypoxic regulation of protein translational pathways in cells exhibiting the capability to proliferate under hypoxic conditions.  相似文献   

3.
Physiological cardiac hypertrophy is associated with mitochondrial adaptations that are characterized by activation of PGC-1alpha and increased fatty acid oxidative (FAO) capacity. It is widely accepted that phosphatidylinositol 3-kinase (PI3K) signaling to Akt1 is required for physiological cardiac growth. However, the signaling pathways that coordinate physiological hypertrophy and metabolic remodeling are incompletely understood. We show here that activation of PI3K is sufficient to increase myocardial FAO capacity and that inhibition of PI3K signaling prevents mitochondrial adaptations in response to physiological hypertrophic stimuli despite increased expression of PGC-1alpha. We also show that activation of the downstream kinase Akt is not required for the mitochondrial adaptations that are secondary to PI3K activation. Thus, in physiological cardiac growth, PI3K is an integrator of cellular growth and metabolic remodeling. Although PI3K signaling to Akt1 is required for cellular growth, Akt-independent pathways mediate the accompanying mitochondrial adaptations.  相似文献   

4.
It has been widely proposed that signaling by mammalian target of rapamycin (mTOR) is both necessary and sufficient for the induction of skeletal muscle hypertrophy. Evidence for this hypothesis is largely based on studies that used stimuli that activate mTOR via a phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB)-dependent mechanism. However, the stimulation of signaling by PI3K/PKB also can activate several mTOR-independent growth-promoting events; thus, it is not clear whether signaling by mTOR is permissive, or sufficient, for the induction of hypertrophy. Furthermore, the presumed role of mTOR in hypertrophy is derived from studies that used rapamycin to inhibit mTOR; yet, there is very little direct evidence that mTOR is the rapamycin-sensitive element that confers the hypertrophic response. In this study, we determined that, in skeletal muscle, overexpression of Rheb stimulates a PI3K/PKB-independent activation of mTOR signaling, and this is sufficient for the induction of a rapamycin-sensitive hypertrophic response. Transgenic mice with muscle specific expression of various mTOR mutants also were used to demonstrate that mTOR is the rapamycin-sensitive element that conferred the hypertrophic response and that the kinase activity of mTOR is necessary for this event. Combined, these results provide direct genetic evidence that a PI3K/PKB-independent activation of mTOR signaling is sufficient to induce hypertrophy. In summary, overexpression of Rheb activates mTOR signaling via a PI3K/PKB-independent mechanism and is sufficient to induce skeletal muscle hypertrophy. The hypertrophic effects of Rheb are driven through a rapamycin-sensitive (RS) mechanism, mTOR is the RS element that confers the hypertrophy, and the kinase activity of mTOR is necessary for this event.  相似文献   

5.
Although the inositol phosphatase SHIP-1 is generally thought to inhibit signaling for Fc receptor-mediated phagocytosis, the product of its activity, phosphatidylinositol 3,4 bisphosphate (PI(3,4)P(2)), has been implicated in activation of the NADPH oxidase. This suggests that SHIP-1 positively regulates the generation of reactive oxygen species after phagocytosis. To examine how SHIP-1 activity contributes to Fc receptor-mediated phagocytosis, we measured and compared phospholipid dynamics, membrane trafficking, and the oxidative burst in macrophages from SHIP-1-deficient and wild-type mice. SHIP-1-deficient macrophages showed significantly elevated ratios of PI(3,4,5)P(3) to PI(3,4)P(2) on phagosomal membranes. Imaging reactive oxygen intermediate activities in phagosomes revealed decreased early NADPH oxidase activity in SHIP-1-deficient macrophages. SHIP-1 deficiency also altered later stages of phagosome maturation, as indicated by the persistent elevation of PI(3)P and the early localization of Rab5a to phagosomes. These direct measurements of individual organelles indicate that phagosomal SHIP-1 enhances the early oxidative burst through localized alteration of the membrane 3'-phosphoinositide composition.  相似文献   

6.
7.
SHIP-1 negatively regulates the PI3K pathway in hematopoietic cells and has an emerging role in T lymphocyte biology. PI3K and SHIP can regulate cell migration in leukocytes, particularly in neutrophils, although their role in T cell migration has been less clear. Therefore, we sought to explore the role of SHIP-1 in human CD4(+) T lymphocyte cell migration responses to chemoattractants using a lentiviral-mediated expression system and a short hairpin RNA approach. Silencing of SHIP-1 leads to increased basal phosphorylation of protein kinase B/Akt and its substrate GSK3β, as well as an increase in basal levels of polymerized actin, suggesting that SHIP-1 might regulate changes in the cytoskeleton. Accordingly, silencing of SHIP-1 led to loss of microvilli and ezrin/radixin/moesin phosphorylation, which could not be rescued by the PI3K inhibitor Ly294002. There were striking morphological changes, including a loss of microvilli projections, which mirrored changes in wild type cells after stimulation with the chemokine CXCL11. There was no defect in directional T cell migration toward CXCL11 in the SHIP-1-silenced cells but, importantly, there was a defect in the overall basal motility of SHIP-1 knockdown cells. Taken together, these results implicate SHIP-1 as a key regulator of basal PI3K signaling in human CD4(+) T lymphocytes with important phosphatase-independent actions, which together are key for maintaining normal morphology and basal motility.  相似文献   

8.
Fibroblast growth factor 18 (FGF18) has been shown to regulate chondrocyte proliferation and differentiation by signaling through FGF receptor 3 (FGFR3) and to regulate osteogenesis by signaling through other FGFRs. Fgf18(-/-) mice have an apparent delay in skeletal mineralization that is not seen in Fgfr3(-/-) mice. However, this delay in mineralization could not be simply explained by FGF18 signaling to osteoblasts. Here we show that delayed mineralization in Fgf18(-/-) mice was closely associated with delayed initiation of chondrocyte hypertrophy, decreased proliferation at early stages of chondrogenesis, delayed skeletal vascularization and delayed osteoclast and osteoblast recruitment to the growth plate. We further show that FGF18 is necessary for Vegf expression in hypertrophic chondrocytes and the perichondrium and is sufficient to induce Vegf expression in skeletal explants. These findings support a model in which FGF18 regulates skeletal vascularization and subsequent recruitment of osteoblasts/osteoclasts through regulation of early stages of chondrogenesis and VEGF expression. FGF18 thus coordinates neovascularization of the growth plate with chondrocyte and osteoblast growth and differentiation.  相似文献   

9.
Cartilage provides the template for endochondral ossification and is crucial for determining the length and width of the skeleton. Transgenic mice with targeted expression of recombinant cartilage-derived morphogenetic protein-1 (CDMP-1), a member of the bone morphogenetic protein family, were created to investigate the role of CDMP-1 in skeletal formation. The mice exhibited chondrodysplasia with expanded cartilage, which consists of the enlarged hypertrophic zone and the reduced proliferating chondrocyte zone. Histologically, CDMP-1 increased the number of chondroprogenitor cells and accelerated chondrocyte differentiation to hypertrophy. Expression of CDMP-1 in the notochord inhibited vertebral body formation by blocking migration of sclerotome cells to the notochord. These results indicate that CDMP-1 antagonizes the ventralization signals from the notochord. Our study suggests a molecular mechanism by which CDMP-1 regulates the formation, growth, and differentiation of the skeletal elements.  相似文献   

10.
杨晓 《生命科学》2008,20(2):165-170
转化生长因子-β(TGF-β)是一个包括数十种TGF-βs、骨形态发生蛋白(BMPs)等配体在内的生长因子超家族,在哺乳动物整体和组织器官发育过程中具有广泛而重要的功能。Smad4是细胞内TGF-β信号通路的核心信号转导分子。为了深入研究Smad4介导的TGF-β信号在骨骼发育过程中的生理功能,我们利用转基因技术研制了软骨细胞、肥大型软骨细胞和成骨细胞分别特异性表达Cre重组酶的转基因小鼠,利用条件基因敲除技术研制了不同类型骨骼细胞Smad4基因敲除的小鼠模型。表型分析结果揭示了Smad4在软骨细胞增殖和分化、骨重塑以及稳态维持过程中的功能以及相关的分子机制,为理解人类相关骨骼疾病的发生及其机理提供了新的线索。  相似文献   

11.
12.
Sequential proliferation, hypertrophy and maturation of chondrocytes are required for proper endochondral bone development and tightly regulated by cell signaling. The canonical Wnt signaling pathway acts through β-catenin to promote chondrocyte hypertrophy whereas PTHrP signaling inhibits it by holding chondrocytes in proliferating states. Here we show by genetic approaches that chondrocyte hypertrophy and final maturation are two distinct developmental processes that are differentially regulated by Wnt/β-catenin and PTHrP signaling. Wnt/β-catenin signaling regulates initiation of chondrocyte hypertrophy by inhibiting PTHrP signaling activity, but it does not regulate PTHrP expression. In addition, Wnt/β-catenin signaling regulates chondrocyte hypertrophy in a non-cell autonomous manner and Gdf5/Bmp signaling may be one of the downstream pathways. Furthermore, Wnt/β-catenin signaling also controls final maturation of hypertrophic chondrocytes, but such regulation is PTHrP signaling-independent.  相似文献   

13.
J Wang  J Zhou  C A Bondy 《FASEB journal》1999,13(14):1985-1990
Longitudinal bone growth, and hence stature, are functions of growth plate chondrocyte proliferation and hypertrophy. Insulin-like growth factor 1 (Igf1) is reputed to augment longitudinal bone growth by stimulating growth plate chondrocyte proliferation. In this study, however, we demonstrate that chondrocyte numbers and proliferation are normal in Igf1 null mice despite a 35% reduction in the rate of long bone growth. Igf1 null hypertrophic chondrocytes differentiate normally in terms of expressing specialized proteins such as collagen X and alkaline phosphatase, but are smaller than wild-type at all levels of the hypertrophic zone. The terminal hypertrophic chondrocytes, which form the scaffold on which long bone growth extends, are reduced in linear dimension by 30% in Igf1 null mice, accounting for most of their decreased longitudinal growth. The expression of the insulin-sensitive glucose transporter, GLUT4, is significantly decreased and the insulin-regulated enzyme glycogen synthase kinase 3beta (GSK3) is hypo-phosphorylated in Igf1 null chondrocytes. Glycogen levels were significantly decreased and ribosomal RNA levels were reduced by almost 75% in Igf1 null chondrocytes. These data suggest that Igf1 promotes longitudinal bone growth by 'insulin-like' anabolic actions which augment chondrocyte hypertrophy.  相似文献   

14.

Background

Endochondral ossification, the process through which long bones are formed, involves chondrocyte proliferation and hypertrophic differentiation in the cartilage growth plate. In a previous publication we showed that pharmacological inhibition of the PI3K signaling pathway results in reduced endochondral bone growth, and in particular, shortening of the hypertrophic zone in a tibia organ culture system. In this current study we aimed to investigate targets of the PI3K signaling pathway in hypertrophic chondrocytes.

Methodology/Principal Findings

Through the intersection of two different microarray analyses methods (classical single gene analysis and GSEA) and two different chondrocyte differentiation systems (primary chondrocytes treated with a pharmacological inhibitor of PI3K and microdissected growth plates), we were able to identify a high number of genes grouped in GSEA functional categories regulated by the PI3K signaling pathway. Genes such as Phlda2 and F13a1 were down-regulated upon PI3K inhibition and showed increased expression in the hypertrophic zone compared to the proliferative/resting zone of the growth plate. In contrast, other genes including Nr4a1 and Adamts5 were up-regulated upon PI3K inhibition and showed reduced expression in the hypertrophic zone. Regulation of these genes by PI3K signaling was confirmed by quantitative RT-PCR. We focused on F13a1 as an interesting target because of its known role in chondrocyte hypertrophy and osteoarthritis. Mouse E15.5 tibiae cultured with LY294002 (PI3K inhibitor) for 6 days showed decreased expression of factor XIIIa in the hypertrophic zone compared to control cultures.

Conclusions/Significance

Discovering targets of signaling pathways in hypertrophic chondrocytes could lead to targeted therapy in osteoarthritis and a better understanding of the cartilage environment for tissue engineering.  相似文献   

15.
Alternatively activated M2 macrophages are implicated as both regulators and agents of lung disease, but their control is poorly understood. SHIP-1 is a 5' inositol phosphatase that negatively regulates the PI3K signaling pathway implicated in inflammation. SHIP-1-deficient mice have defects in hematopoiesis and B cell development, and die prematurely due to consolidation of lungs with M2-skewed macrophages. SHIP-1 is thought to restrain M2 macrophage polarization, with deregulated M2 skewing coinciding with severe lung disease in SHIP-1-deficient mice. To determine the influence of genetic background on the lung phenotype in SHIP-1(-/-) mice, we backcrossed the SHIP-1 null mutation onto C57BL/6 (Th2-resistant) and BALB/c (Th2-prone) backgrounds. Remarkably, we found that inflammatory lung disease was severe in C57.SHIP-1(-/-) mice, but absent in BALB.SHIP-1(-/-) mice. C57.SHIP-1(-/-), but not BALB.SHIP-1(-/-) mice had greatly increased myeloid progenitors, myeloid hyperplasia, markedly enhanced numbers of activated alveolar macrophages, and elevated amounts of Th2 and proinflammatory cytokines in bronchoalveolar lavage fluid and serum, suggesting that deregulated cytokine production induced disease. C57.SHIP-1(-/-) mice also developed severe B cell-dependent autoimmune disease, which was markedly attenuated on the BALB/c background. These data demonstrate that, contrary to current concepts, loss of SHIP-1 alone is not sufficient to cause lung inflammation, with disease only manifest on a permissive genetic background. This finding questions the nature of the lung disease in SHIP-1(-/-) mice, suggesting that its M2 classification is not strictly correct. Future identification of disease-promoting loci might reveal determinants of comorbid lung disease and autoimmunity and uncover potentially useful therapeutic targets.  相似文献   

16.
Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.  相似文献   

17.
18.
Chondrocyte hypertrophy is an essential process required for endochondral bone formation. Proper regulation of chondrocyte hypertrophy is also required in postnatal cartilage homeostasis. Indian hedgehog (Ihh) and PTHrP signaling play crucial roles in regulating the onset of chondrocyte hypertrophy by forming a negative feedback loop, in which Ihh signaling regulates chondrocyte hypertrophy by controlling PTHrP expression. To understand whether there is a PTHrP-independent role of Ihh signaling in regulating chondrocyte hypertrophy, we have both activated and inactivated Ihh signaling in the absence of PTHrP during endochondral skeletal development. We found that upregulating Ihh signaling in the developing cartilage by treating PTHrP(-/-) limb explants with sonic hedgehog (Shh) protein in vitro, or overexpressing Ihh in the cartilage of PTHrP(-/-) embryos or inactivating patched 1 (Ptch1), a negative regulator of hedgehog (Hh) signaling, accelerated chondrocyte hypertrophy in the PTHrP(-/-) embryos. Conversely, when Hh signaling was blocked by cyclopamine or by removing Smoothened (Smo), a positive regulator of Hh signaling, chondrocyte hypertrophy was delayed in the PTHrP(-/-) embryo. Furthermore, we show that upregulated Hh signaling in the postnatal cartilage led to accelerated chondrocyte hypertrophy during secondary ossification, which in turn caused reduction of joint cartilage. Our results revealed a novel role of Ihh signaling in promoting chondrocyte hypertrophy independently of PTHrP, which is particularly important in postnatal cartilage development and homeostasis. In addition, we found that bone morphogenetic protein (Bmp) and Wnt/beta-catenin signaling in the cartilage may both mediate the effect of upregulated Ihh signaling in promoting chondrocyte hypertrophy.  相似文献   

19.
Insulin and insulin-like growth factor 1 (IGF-1) receptor signaling pathways differentially modulate cardiac growth under resting conditions and following exercise training. These effects are mediated by insulin receptor substrate 1 (IRS1) and IRS2, which also differentially regulate resting cardiac mass. To determine the role of IRS isoforms in mediating the hypertrophic and metabolic adaptations of the heart to exercise training, we subjected mice with cardiomyocyte-specific deletion of either IRS1 (CIRS1 knockout [CIRS1KO] mice) or IRS2 (CIRS2KO mice) to swim training. CIRS1KO hearts were reduced in size under basal conditions, whereas CIRS2KO hearts exhibited hypertrophy. Following exercise swim training in CIRS1KO and CIRS2KO hearts, the hypertrophic response was equivalently attenuated, phosphoinositol 3-kinase (PI3K) activation was blunted, and prohypertrophic signaling intermediates, such as Akt and glycogen synthase kinase 3β (GSK3β), were dephosphorylated potentially on the basis of reduced Janus kinase-mediated inhibition of protein phosphatase 2a (PP2A). Exercise training increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) protein content, mitochondrial capacity, fatty acid oxidation, and glycogen synthesis in wild-type (WT) controls but not in IRS1- and IRS2-deficient hearts. PGC-1α protein content remained unchanged in CIRS1KO but decreased in CIRS2KO hearts. These results indicate that although IRS isoforms play divergent roles in the developmental regulation of cardiac size, these isoforms exhibit nonredundant roles in mediating the hypertrophic and metabolic response of the heart to exercise.  相似文献   

20.
Li R  Zheng W  Pi R  Gao J  Zhang H  Wang P  Le K  Liu P 《FEBS letters》2007,581(17):3311-3316
Activation of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) has been recently reported to inhibit vascular inflammatory response and prevent cardiac hypertrophy. However, it is unclear how the activation of PPAR-alpha regulates hypertrophic response. In the present study, we found that application of fenofibrate and overexpression of PPAR-alpha inhibited endothelin-1 (ET-1)-induced phosphorylation of protein kinase B (Akt) at Ser473 and glycogen synthase kinase3beta (GSK3beta) at Ser9, and prevented ET-1-induced nuclear translocation of NFATc4 in cardiomyocytes. Moreover, co-immunoprecipitation studies showed that fenofibrate strongly induced the association of nuclear factor of activated T cells (NFATc4) with PPAR-alpha. These results suggest that activation of PPAR-alpha inhibits ET-1-induced cardiac hypertrophy through regulating PI3K/Akt/GSK3beta and NFAT signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号