首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transforming growth factor beta (TGF-) binds specifically and with high affinity to several different cell surface proteins. Low Mr proteins of 50,000 and 80,000 have been termed type I and type II receptors. Intermediate sized binding components of 115,000–140,000 Mr and a high binding components of approximately 250,000 Mr in subunit size have been termed type III receptors. The high Mr component is a proteoglycan containing the glycosaminoglycan chains of heparan sulfate and chondroitin sulfate and the intermediate sized components are its core proteins. Although almost all cells have TGF- receptors, binding of TGF- to the type III binding components is restricted to cells of fibroblastic, osteoblastic and chondroblastic origin. The physiological relevance of each individual binding class is unclear. However, recent data indicate that the type III protein does not transmit signals to inhibit cell proliferation, induce protein synthesis, or promote cytomorphological change and that these activities may be mediated through the type I receptor. The mechanism of signal transduction remains unknown, but it does not appear to be associated with tyrosine phosphorylation or phosphorylation of the 40s ribosomal protein S6.Abbreviations TGF Transforming Growth Factor - GAG Glycosaminoglycan - EGF Epidermal Growth Factor  相似文献   

3.
Hepatic progenitor cells (HPCs) are activated in the chronic liver injury and are found to participate in the progression of liver fibrosis, while the precise role of HPCs in liver fibrosis remains largely elusive. In this study, by immunostaining of human liver sections, we confirmed that HPCs were activated in the cirrhotic liver and secreted transforming growth factor β (TGF-β) and connective tissue growth factor (CTGF), both of which were important inducers of liver fibrosis. Besides, we used HPC cell lines LE/6 and WB-F344 as in vitro models and found that TGF-β induced secretion of CTGF in HPCs. Moreover, TGF-β signaling was intracrine activated and contributed to autonomous secretion of CTGF in HPCs. Furthermore, we found that TGF-β induced expression of CTGF was not mediated by TGF-β activated Smad signaling but mediated by TGF-β activated Erk, JNK and p38 MAPK signaling. Taken together, our results provide evidence for the role of HPCs in liver fibrosis and suggest that the production of CTGF by TGF-β activated MAPK signaling in HPCs may be a therapeutic target of liver fibrosis.  相似文献   

4.
Transforming growth factor (TGF)-β is a multitasking cytokine such that its aberrant expression is related to cancer progression and metastasis. TGF-β is produced by a variety of cells within the tumor microenvironment (TME), and it is responsible for regulation of the activity of cells within this milieu. TGF-β is a main inducer of epithelial–mesenchymal transition (EMT), immune evasion, and metastasis during cancer progression. TGF-β exerts most of its functions by acting on TβRI and TβRII receptors in canonical (Smad-dependent) or noncanonical (Smad-independent) pathways. Members of mitogen-activated protein kinase, phosphatidylinositol 3-kinase/protein kinase B, and nuclear factor κβ are involved in the non-Smad TGF-β pathway. TGF-β acts by complex signaling, and deletion in one of the effectors in this pathway may influence the outcome in a diverse way by taking even an antitumor role. The stage and the type of tumor (contextual cues from cancer cells and/or the TME) and the concentration of TGF-β are other important factors determining the fate of cancer (progression or repression). There are a number of ways for targeting TGF-β signaling in cancer, among them the special focus is on TβRII suppression.  相似文献   

5.
6.
We used cDNA microarray to identify transforming growth factor beta (TGF-β) responsive target genes during osteoblast development and found that nephronectin (Npnt) is one such gene that is significantly down-regulated. Here we report the role of TGF-β in regulating Npnt-mediated osteoblast differentiation. We found that the effect of TGF-β on Npnt expression is associated with a change in cell morphology in a dose-dependent manner. Npnt-induced osteoblast differentiation was also inhibited by TGF-β, which changed cell morphology from cuboidal to fibroblastic, an indication that osteoblast differentiation was disrupted. Furthermore, TGF-β inhibited differentiation of osteoblasts transfected with various truncated Npnt constructs, suggesting that TGF-β can exert a down-stream effect on Npnt function. Our results suggest that TGF-β can inhibit osteoblast differentiation through various mechanisms.  相似文献   

7.
During palatogenesis, the palatal mesenchyme undergoes increased cell proliferation resulting in palatal growth, elevation and fusion of the two palatal shelves. Interestingly, the palatal mesenchyme expresses all three transforming growth factor (TGF) β isoforms (1, 2, and 3) throughout these steps of palatogenesis. However, the role of TGFβ in promoting proliferation of palatal mesenchymal cells has never been explored. The purpose of this study was to identify the effect of TGFβ on human embryonic palatal mesenchymal (HEPM) cell proliferation. Our results showed that all isoforms of TGFβ, especially TGFβ3, increased HEPM cell proliferation by up‐regulating the expression of cyclins and cyclin‐dependent kinases as well as c‐Myc oncogene. TGFβ activated both Smad‐dependent and Smad‐independent pathways to induce c‐Myc gene expression. Furthermore, TBE1 is the only functional Smad binding element (SBE) in the c‐Myc promoter and Smad4, activated by TGFβ, binds to the TBE1 to induce c‐Myc gene activity. We conclude that HEPM proliferation is manifested by the induction of c‐Myc in response to TGFβ signaling, which is essential for complete palatal confluency. Our data highlights the potential role of TGFβ as a therapeutic molecule to correct cleft palate by promoting growth. J. Cell. Biochem. 113: 3069–3085, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
Ali NA  Molloy MP 《Proteomics》2011,11(16):3390-3401
The transforming growth factor‐β (TGF‐β) signaling pathway progresses through a series of protein phosphorylation regulated steps. Smad4 is a key mediator of the classical TGF‐β signaling pathway; however, reports suggest that TGF‐β can activate other cellular pathways independent of Smad4. By investigating the TGF‐β‐regulated phosphoproteome, we aimed to uncover new functions controlled by TGF‐β. We applied titanium dioxide to enrich phosphopeptides from stable isotope labeling with amino acids in cell culture (SILAC)‐labeled SW480 cells stably expressing Smad4 and profiled them by mass spectrometry. TGF‐β stimulation for 30 min resulted in the induction of 17 phosphopeptides and the repression of 8 from a total of 149 unique phosphopeptides. Proteins previously not known to be phosphorylated by TGF‐β including programmed cell death protein 4, nuclear ubiquitous casein and cyclin‐dependent kinases substrate, hepatoma‐derived growth factor and cell division kinases amongst others were induced following TGF‐β stimulation, while the phosphorylation of TRAF2 and NCK‐interacting protein kinase are examples of proteins whose phosphorylation status was repressed. This phosphoproteomic screen has identified new TGF‐β‐modulated phosphorylation responses in colon carcinoma cells.  相似文献   

10.
11.
Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells.  相似文献   

12.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and characterized by the formation of multiple fluid-filled cysts in the kidneys. It is believed that environmental factors may play an important role in the disease progression. However, the molecular identity of autocrine/paracrine factors influencing cyst formation is largely unknown. In this study, we identified transforming growth factor-β2 (TGF-β2) secreted by normal human kidney (NHK) and ADPKD cells as an inhibitor of cystogenesis in 3D culture system using ADPKD cells from human kidneys. TGF-β2 was identified in conditioned media (CM) of NHK and ADPKD cells as a latent factor activated by heat in vitro. While all TGF-β isoforms recombinant proteins (TGF-β1, -β2, or -β3) displayed a similar inhibitory effect on cyst formation, TGF-β2 was the predominant isoform detected in CM. The involvement of TGF-β2 in the suppression of cyst formation was demonstrated by using a TGF-β2 specific blocking antibody and a TGF-β receptor I kinase inhibitor. TGF-β2 inhibited cyst formation by a mechanism other than activation of p38 mitogen-activated protein (MAP) kinase that mediated cell death in ADPKD cells. Further, we found that TGF-β2 modulated expression of various genes involved in cell-cell and cell-matrix interactions and extracellular matrix proteins that may play a role in the regulation of cystogenesis. Collectively, our results suggest that TGF-β2 secreted by renal epithelial cells may be an inhibitor of cystogenesis influencing the progression of ADPKD.  相似文献   

13.
Qin Y  Zhong Y  Dang L  Zhu M  Yu H  Chen W  Cui J  Bian H  Li Z 《Journal of Proteomics》2012,75(13):4114-4123
Although aberrant glycosylation of human glycoproteins is related to liver fibrosis that results from chronic damage to the liver in conjunction with the activation of hepatic stellate cells (HSCs), little is known about the precision alteration of protein glycosylation referred to the activation of HSCs by transforming growth factor-β1 (TGF-β1). The human HSCs, LX-2 were activated by TGF-β1. The lectin microarrays were used to probe the alteration of protein glycosylation in the activated HSCs compared with the quiescent HSCs. Lectin histochemistry was used to further validate the lectin binding profiles and assess the distribution of glycosidic residues in cells. As a result, 14 lectins (e. g. AAL, PHA-E, ECA and ConA) showed increased signal while 7 lectins (e. g. UEA-I and GNA) showed decreased signal in the activated LX-2 compared with the quiescent LX-2. Meanwhile, AAL, PHA-E and ECA staining showed moderate binding to the cytoplasma membrane in the quiescent LX-2, and the binding intensified in the same regions of the activated LX-2. In conclusion, the precision alteration of protein glycosylation related to the activation of the HSCs may provide useful information to find new molecular mechanism of HSC activation and antifibrotic therapeutic strategies.  相似文献   

14.
The Smad pathway in transforming growth factor-β signaling   总被引:3,自引:0,他引:3  
The transforming growth factor b (TGF-b) superfamily comprises a great number of structurally related polypeptide growth factors, such as TGF-bs, activins, inhibins, bone morphogenic proteins (BMPs), growth differentiation factors (GDFs), M黮lerian inhibitory substance, and glial cell-derived neurotrophic factor (GDNF), etc[1]. The TGF-b superfamily members are multifunctional agonists involved in a broad spectrum of biological processes such as cell proliferation and differentiation, e…  相似文献   

15.
16.
17.
We have previously shown that inhibition of transforming growth factor-β (TGF-β) signaling attenuates hypoxia-induced inhibition of alveolar development and abnormal pulmonary vascular remodeling in the newborn mice and that endothelin-A receptor (ETAR) antagonists prevent and reverse the vascular remodeling. The current study tested the hypothesis that inhibition of TGF-β signaling attenuates endothelin-1 (ET-1) expression and thereby reduces effects of hypoxia on the newborn lung. C57BL/6 mice were exposed from birth to 2 wk of age to either air or hypoxia (12% O(2)) while being given either BQ610 (ETAR antagonist), BQ788 (ETBR antagonist), 1D11 (TGF-β neutralizing antibody), or vehicle. Lung function and development and TGF-β and ET-1 synthesis were assessed. Hypoxia inhibited alveolar development, decreased lung compliance, and increased lung resistance. These effects were associated with increased TGF-β synthesis and signaling and increased ET-1 synthesis. BQ610 (but not BQ788) improved lung function, without altering alveolar development or increased TGF-β signaling in hypoxia-exposed animals. Inhibition of TGF-β signaling reduced ET-1 in vivo, which was confirmed in vitro in mouse pulmonary endothelial, fibroblast, and epithelial cells. ETAR blockade improves function but not development of the hypoxic newborn lung. Reduction of ET-1 via inhibition of TGF-β signaling indicates that TGF-β is upstream of ET-1 during hypoxia-induced signaling in the newborn lung.  相似文献   

18.
HIV replication can be inhibited by CXCR5+CD8 T cells (follicular cytotoxic T cell [TFC]) which transfer into B-cell follicles where latent HIV infection persists. However, how cytokines affect TFC remain unclear. Understanding which cytokines show the ability to affect TFC could be a key strategy toward curing HIV. Similar mechanisms could be used for the growth and transfer of TFCs and follicular helper T (TFH) cells; as a result, we hypothesized that cytokines IL-6, IL-21, and transforming growth factor-β (TGF-β), which are necessary for the differentiation of TFH cells, could also dictate the development of TFCs. In this work, lymph node mononuclear cells and peripheral blood mononuclear cells from HIV-infected individuals were cocultured with IL-6, IL-21, and TGF-β. We then carried out T-cell receptor (TCR) repertoire analysis to compare the differences between CXCR5 and CXCR5+CD8 T cells. Our results showed that the percentage and function of TFC can be enhanced by stimulation with TGF-β. Besides, TGF-β stimulation enhanced the diversity of TCR and complementarity-determining region 3 sequences. HIV DNA showed a negative correlation with TFC. The use of TGF-β to promote the expression of CXCR5+CD8 T cells could become a new treatment approach for curing HIV.  相似文献   

19.
Transforming growth factor- (TGF-) plays a pivotal role in numerous vital cellular activities, most significantly the regulation of cellular proliferation and differentiation and synthesis of extracellular matrix components. Its ubiquitous presence in different tissues and strict conservation of nucleotide sequence down through the most primitive vertebrate organisms underscore the essential nature of this family of molecules. The effects of TGF- are mediated by a family of dedicated receptors, the TGF- types I, II, and III receptors. It is now known that a wide variety of human pathology can be caused by aberrant expression and function of these receptors or their cognate ligands. The coding sequence of the human type II receptor appears to render it uniquely susceptible to DNA replication errors in the course of normal cell division. There are now substantial data suggesting that TGF- type II receptor should be considered a tumor suppressor gene. High levels of mutation in the TGF- type II receptor gene have been observed in a wide variety of primarily epithelial malignancies, including colon, gastric, and hepatic cancer. It appears likely that mutation of the TGF- type II receptor gene represents a very critical step in the pathway of carcinogenesis.  相似文献   

20.
Pancreatic cancer is a common malignant digestive disease. Epidemiological and clinical studies have demonstrated that pancreatic cancer is closely related to diabetes mellitus. Diabetic patients are more likely to develop pancreatic cancer, which is linked with poor outcomes. Pancreatic cancer is complicated with abnormal blood sugar and insulin resistance and promotes the development of diabetes mellitus. Understanding the molecular mechanisms linking diabetes mellitus and pancreatic cancer is essential for the treatment of diabetes cancer patients. The transforming growth factor-β (TGF-β) signaling pathway is deregulated in cancer and has a dual role in different stages of cancer as a suppressor or a promoter. More important, The TGF-β signaling pathway is also another important reason for diabetic complications. This review summarizes the relationship between diabetes and pancreatic cancer, in particular, focusing on the role of the TGF-β signaling pathway. It is possible to find drugs like metformin that can prevent and treat pancreatic cancer by targeting the TGF-β signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号