首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims: Decellularized liver matrix (DLM) hold great potential for reconstructing functional hepatic-like tissue (HLT) based on reseeding of hepatocytes or stem cells, but the shortage of liver donors is still an obstacle for potential application. Therefore, an appropriate alternative scaffold is needed to expand the donor pool. In this study, we explored the effectiveness of decellularized spleen matrix (DSM) for culturing of bone marrow mesenchymal stem cells (BMSCs), and promoting differentiation into hepatic-like cells.

Methods: Rats' spleen were harvested for DSM preparation by freezing/thawing and perfusion procedure. Then the mesenchymal stem cells derived from rat bone marrow were reseeded into DSM for dynamic culture and hepatic differentiation by a defined induction protocol.

Results: The research found that DSM preserved a 3-dimensional porous architecture, with native extracellular matrix and vascular network which was similar to DLM. The reseeded BMSCs in DSM differentiated into functional hepatocyte-like cells, evidenced by cytomorphology change, expression of hepatic-associated genes and protein markers, glycogen storage, and indocyanine green uptake. The albumin production (2.74±0.42 vs. 2.07±0.28 pg/cell/day) and urea concentration (75.92±15.64 vs. 52.07±11.46 pg/cell/day) in DSM group were remarkably higher than tissue culture flasks (TCF) group over the same differentiation period, P< 0.05.

Conclusion: This present study demonstrated that DSM might have considerable potential in fabricating hepatic-like tissue, particularly because it can facilitate hepatic differentiation of BMSCs which exhibited higher level and more stable functions.  相似文献   


2.
Liver tissue engineering as a therapeutic option for restoring of damaged liver function has a special focus on using native decellularized liver matrix, but there are limitations such as the shortage of liver donor. Therefore, an appropriate alternative scaffold is needed to circumvent the donor shortage. This study was designed to evaluate hepatic differentiation of human induced pluripotent stem cells (hiPSCs) in decellularized Wharton's jelly (WJ) matrix as an alternative for native liver matrix. WJ matrices were treated with a series of detergents for decellularization. Then hiPSCs were seeded into decellularized WJ scaffold (DWJS) for hepatic differentiation by a defined induction protocol. The DNA quantitative assay and histological evaluation showed that cellular and nuclear materials were efficiently removed and the composition of extracellular matrix was maintained. In DWJS, hiPSCs-derived hepatocyte-like cells (hiPSCs-Heps) efficiently entered into the differentiation phase (G1) and gradually took a polygonal shape, a typical shape of hepatocytes. The expression of hepatic-associated genes (albumin, TAT, Cytokeratin19, and Cyp7A1), albumin and urea secretion in hiPSCs-Heps cultured into DWJS was significantly higher than those cultured in the culture plates (2D). Altogether, our results suggest that DWJS could provide a proper microenvironment that efficiently promotes hepatic differentiation of hiPSCs.  相似文献   

3.
Human Amniotic Epithelial Cells (hAEC) isolated from term placenta are a promising source for regenerative medicine. However, it has long been debated whether the hAEC population consists of heterogeneous or homogeneous cells. In a previous study, we investigated the characteristics of hAEC isolated from four different regions of the amniotic membrane finding significant heterogeneity. The aim of this study was to evaluate the hepatic differentiation capability of hAEC isolated from these four regions. Human term placentae were collected after caesarean section and hAEC were isolated from four regions of the amniotic membrane (R1-R4, according to their relative distance from the umbilical cord) and treated in hepatic differentiation conditions for 14 days. hAEC-derived hepatocyte-like cells showed marked differences in the expression of hepatic markers: R4 showed higher levels of Albumin and Hepatocyte Nuclear Factor (HNF) 4α whereas R1 expressed higher Cytochrome P450 enzymes, both at the gene and protein level. These preliminary results suggest that hAEC isolated from R1 and R4 of the amniotic membrane are more prone to hepatic differentiation. Therefore, the use of hAEC from a specific region of the amniotic membrane should be taken into consideration as it could have an impact on the outcome of therapeutic applications.  相似文献   

4.
PurposeTo compare the timing and efficiency of the development of Macaca mulatta, a nonhuman primate (NHP), induced pluripotent stem cell (rhiPSC) derived retinal organoids to those derived from human embryonic stem cells (hESCs).ResultsGeneration of retinal organoids was achieved from both human and several NHP pluripotent stem cell lines. All rhiPSC lines resulted in retinal differentiation with the formation of optic vesicle‐like structures similar to what has been observed in hESC retinal organoids. NHP retinal organoids had laminated structure and were composed of mature retinal cell types including cone and rod photoreceptors. Single‐cell RNA sequencing was conducted at two time points; this allowed identification of cell types and developmental trajectory characterization of the developing organoids. Important differences between rhesus and human cells were measured regarding the timing and efficiency of retinal organoid differentiation. While the culture of NHP‐derived iPSCs is relatively difficult compared to that of human stem cells, the generation of retinal organoids from NHP iPSCs is feasible and may be less time‐consuming due to an intrinsically faster timing of retinal differentiation.ConclusionsRetinal organoids produced from rhesus monkey iPSCs using established protocols differentiate through the stages of organoid development faster than those derived from human stem cells. The production of NHP retinal organoids may be advantageous to reduce experimental time for basic biology studies in retinogenesis as well as for preclinical trials in NHPs studying retinal allograft transplantation.  相似文献   

5.
Abstract Stem-cell-based therapies may offer treatments for a variety of intractable diseases. A fundamental goal in stem-cell biology concerns the characterization of diverse populations that exhibit different potentials, growth capabilities, and therapeutic utilities. We report the characterization of a stem-cell population isolated from tissue explants of rat amniotic membrane. Similar to mesenchymal stem cells, these amnion-derived stem cells (ADSCs) express the surface markers CD29 and CD90, but were negative for the lymphohematopoietic markers CD45 and CD11b. ADSCs exist in culture in a multidifferentiated state, expressing neuroectodermal (neurofilament-M), mesodermal (fibronectin), and endodermal (α-1-antitrypsin) genes. To assess plasticity, ADSCs were subjected to a number of culture conditions intended to encourage differentiation into neuroectodermal, mesodermal, and endodermal cell types. ADSCs cultured in a defined neural induction media assumed neuronal morphologies and up-regulated neural-specific genes. Under different conditions, ADSCs were capable of differentiating into presumptive bone and fat cells, indicated by the deposition of mineralized matrix and accumulated lipid droplets, respectively. Moreover, ADSCs cultured in media that promotes liver cell differentiation up-regulated liver-specific genes (albumin) and internalized low-density lipoprotein (LDL), consistent with a hepatocyte phenotype. To determine whether this observed plasticity reflects the presence of true stem cells within the population, we have derived individual clones from single cells. Clonal lines recapitulate the expression pattern of parental ADSC cultures and are multipotent. ADSCs have been cultured for 20 passages without losing their plasticity, suggesting long-term self-renewal. In sum, our data suggest that ADSCs and derived clonal lines are capable of long-term self-renewal and multidifferentiation, fulfilling all the criteria of a stem-cell population.  相似文献   

6.
Cellular homeostasis is assumed to be regulated by the coordination of dynamic behaviors. Lack of efficient methods for synchronizing large quantities of cells makes studying cell culture strategies for bioprocess development challenging. Here, we demonstrate a novel application of botulinum hemagglutinin (HA), an E-cadherin function-blocking agent, to synchronize behavior-driven mechanical memory in human induced pluripotent stem cell (hiPSC) cultures. Application of HA to hiPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration-and time-dependent manner. Interestingly, cytoskeleton rearrangement in cells with prolonged exposure to HA resulted in mechanical memory synchronization with Yes-associated protein, which increased pluripotent cell homogeneity. Synchronized hiPSCs have higher capability to differentiate into functional hepatocytes than unsynchronized hiPSCs, resulting in improved efficiency and robustness of hepatocyte differentiation. Thus, our strategy for cell behavior synchronization before differentiation induction provides an approach against the instability of differentiation of pluripotent cells.  相似文献   

7.
8.
The main goal of the study was to identify a novel source of human multipotent cells, overcoming ethical issues involved in embryonic stem cell research and the limited availability of most adult stem cells. Amniotic fluid cells (AFCs) are routinely obtained for prenatal diagnosis and can be expanded in vitro; nevertheless current knowledge about their origin and properties is limited. Twenty samples of AFCs were exposed in culture to adipogenic, osteogenic, neurogenic and myogenic media. Differentiation was evaluated using immunocytochemistry, RT-PCR and Western blotting. Before treatments, AFCs showed heterogeneous morphologies. They were negative for MyoD, Myf-5, MRF4, Myogenin and Desmin but positive for osteocalcin, PPARgamma2, GAP43, NSE, Nestin, MAP2, GFAP and beta tubulin III by RT-PCR. The cells expressed Oct-4, Rex-1 and Runx-1, which characterize the undifferentiated stem cell state. By immunocytochemistry they expressed neural-glial proteins, mesenchymal and epithelial markers. After culture, AFCs differentiated into adipocytes and osteoblasts when the predominant cellular component was fibroblastic. Early and late neuronal antigens were still present after 2 week culture in neural specific media even if no neuronal morphologies were detectable. Our results provide evidence that human amniotic fluid contains progenitor cells with multi-lineage potential showing stem and tissue-specific gene/protein presence for several lineages.  相似文献   

9.
Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) promise a valuable source of cells with human genetic background, physiologically relevant liver functions, and unlimited supply. With over 10 years’ efforts in this field, great achievements have been made. HLCs have been successfully derived and applied in disease modeling, toxicity testing and drug discovery. Large cohorts of induced pluripotent stem cells-derived HLCs have been recently applied in studying population genetics and functional outputs of common genetic variants in vitro. This has offered a new paradigm for genome-wide association studies and possibly in vitro pharmacogenomics in the nearly future. However, HLCs have not yet been successfully applied in bioartificial liver devices and have only displayed limited success in cell transplantation. HLCs still have an immature hepatocyte phenotype and exist as a population with great heterogeneity, and HLCs derived from different hPSC lines display variable differentiation efficiency. Therefore, continuous improvement to the quality of HLCs, deeper investigation of relevant biological processes, and proper adaptation of recent advances in cell culture platforms, genome editing technology, and bioengineering systems are required before HLCs can fulfill the needs in basic and translational research. In this review, we summarize the discoveries, achievements, and challenges in the derivation and applications of HLCs.  相似文献   

10.
《Organogenesis》2013,9(3):77-88
Broadly multipotent stem cells can be isolated from amniotic fluid by selection for the expression of the membrane stem cell factor receptor c-Kit, a common marker for multipotential stem cells. They have clonogenic capability and can be directed into a wide range of cell types representing the three primary embryonic lineages. Amniotic fluid stem cells maintained for over 250 population doublings retained long telomeres and a normal karyotype. Clonal human lines verified by retroviral marking were induced to differentiate into cell types representing each embryonic germ layer, including cells of adipogenic, osteogenic, myogenic, endothelial, neuronal and hepatic lineages. AFS cells could be differentiate toward cardiomyogenic lineages, when co-cultured with neonatal cardiomyocytes, and have the potential to generate myogenic and hematopoietic lineages both in vitro and in vivo. Very recently first trimester AFS cells could be reprogrammed without any genetic manipulation opening new possibilities in the field of fetal/neonatal therapy and disease modeling. In this review we are aiming to summarize the knowledge on amniotic fluid stem cells and highlight the most promising results.  相似文献   

11.
12.
There is growing evidence that the human amnion contains various types of stem cell. As amniotic tissue is readily available, it has the potential to be an important source of material for regenerative medicine. In this study, we evaluated the potential of human amnion-derived fibroblast-like (HADFIL) cells to differentiate into neural cells. Two HADFIL cell populations, derived from two different neonates, were analyzed. The expression of neural cell-specific genes was examined before and after in vitro induction of cellular differentiation. We found that neuron specific enolase, neurofilament-medium, beta-tubulin isotype III, and glial fibrillary acidic protein (GFAP) showed significantly increased expression following the induction of differentiation. In addition, immunostaining demonstrated that neuron specific enolase, GFAP and myelin basic protein (MBP) were present in HADFIL cells following the induction of differentiation, although one of the HADFIL cell populations showed a lower expression of GFAP and MBP. These results indicate that HADFIL cell populations have the potential to differentiate into neural cells. Although further studies are necessary to determine whether such in vitro-differentiated cells can function in vivo as neural cells, these amniotic cell populations might be of value in therapeutic applications that require human neural cells.  相似文献   

13.
14.
We have recently characterized a stem cell population isolated from the rodent amniotic membrane termed amnion-derived stem cells (ADSCs). In vitro ADSCs differentiate into cell types representing all three embryonic layers, including neural cells. In this study we evaluated the neuroectodermal potential of ADSCs in vivo after in utero transplantation into the developing rat brain. A clonal line of green fluorescent protein-expressing ADSCs were infused into the telencephalic ventricles of the developing embryonic day 15.5 rat brain. At E17.5 donor cells existed primarily as spheres in the ventricles with subsets fused to the ventricular walls, suggesting a mode of entry into the brain parenchyma. By E21.5 green fluorescent protein (GFP) ADSCs migrated to a number of brain regions. Examination at postnatal time points revealed that donor ADSCs expressed vimentin and nestin. Subsets of transplanted ADSCs attained neuronal morphologies, although there was no immunohistochemical evidence of neural or glial differentiation. Some donor cells migrated around blood vessels and differentiated into putative endothelial cells. Donor ADSCs transplanted in utero were present in recipients into adulthood with no evidence of immunological rejection or tumour formation. Long-term survival may suggest utility in the treatment of disorders where differentiation to a neural cell type is not required for clinical benefit.  相似文献   

15.
16.
Hepatic progenitor cells (HPCs) in adult liver are promising for treatment of liver diseases. A biliary-derived HPC population in adult mice has been characterized by co-expression of stem cell marker Sry (sex determining region Y)-box 9 (SOX9) and biliary marker cytokeratin 7 (CK7). However, isolation of these HPCs in adult healthy liver without any selection procedures remains a big challenge in this field. Here, by establishing a simple and efficient method to isolate and expand the CK7+SOX9+ HPCs in vitro as clones, we acquired a stable and largely scalable cell source. The CK7+SOX9+ progenitor cells were then further induced to differentiate into hepatocyte-like cells with expression of mature hepatocyte markers albumin (Alb) and hepatocyte nuclear factor 4 alpha (HNF4α), both in vitro and in vivo in the presence of hepatocyte growth factor (HGF) and fibroblast growth factor 9 (FGF9). Furthermore, we found that the HPCs are highly responsive to transforming growth factor-beta (TGF-β) signals. Collectively, we identified and harvested a CK7+SOX9+ progenitor cell population from adult mouse liver by a simple and efficient approach. The exploration of this HPC population offers an alternative strategy of generating hepatocyte-like cells for cell-based therapies of acute and chronic liver disorders.  相似文献   

17.
“Multi-Omics” technologies have contributed greatly to the understanding of various diseases by enabling researchers to accurately and rapidly investigate the molecular circuitry that connects cellular systems. The tissue-engineered, three-dimensional (3D), in vitro disease model “organoid” integrates the “omics” results in a model system, elucidating the complex links between genotype and phenotype. These 3D structures have been used to model cancer, infectious disease, toxicity, and neurological disorders. Here, we describe the advantage of using the tissue microarray (TMA) technology to analyze human-induced pluripotent stem cell–derived cerebral organoids. Compared with the conventional processing of individual samples, sectioning and staining of TMA slides are faster and can be automated, decreasing labor and reagent costs. The TMA technology faithfully captures cell morphology variations and detects specific biomarkers. The use of this technology can scale up organoid research results in at least two ways: (1) in the number of specimens that can be analyzed simultaneously and (2) in the number of consecutive sections that can be produced for analysis with different probes and antibodies.  相似文献   

18.
The human amniotic membrane (HAM) is a highly abundant and readily available tissue. This amniotic tissue has considerable advantageous characteristics to be considered as an attractive material in the field of regenerative medicine. It has low immunogenicity, anti-inflammatory properties and their cells can be isolated without the sacrifice of human embryos. Since it is discarded post-partum it may be useful for regenerative medicine and cell therapy. Amniotic membranes have already been used extensively as biologic dressings in ophthalmic, abdominal and plastic surgery. HAM contains two cell types, from different embryological origins, which display some characteristic properties of stem cells. Human amnion epithelial cells (hAECs) are derived from the embryonic ectoderm, while human amnion mesenchymal stromal cells (hAMSCs) are derived from the embryonic mesoderm. Both populations have similar immunophenotype and multipotential for in vitro differentiation into the major mesodermal lineages, however they differ in cell yield. Therefore, HAM has been proposed as a good candidate to be used in cell therapy or regenerative medicine to treat damaged or diseased tissues.  相似文献   

19.
20.
Broadly multipotent stem cells can be isolated from amniotic fluid by selection for the expression of the membrane stem cell factor receptor c-Kit, a common marker for multipotential stem cells. They have clonogenic capability and can be directed into a wide range of cell types representing the three primary embryonic lineages. Amniotic fluid stem cells maintained for over 250 population doublings retained long telomeres and a normal karyotype. Clonal human lines verified by retroviral marking were induced to differentiate into cell types representing each embryonic germ layer, including cells of adipogenic, osteogenic, myogenic, endothelial, neuronal and hepatic lineages. AFS cells could be differentiate toward cardiomyogenic lineages, when co-cultured with neonatal cardiomyocytes, and have the potential to generate myogenic and hematopoietic lineages both in vitro and in vivo. Very recently first trimester AFS cells could be reprogrammed without any genetic manipulation opening new possibilities in the field of fetal/neonatal therapy and disease modeling. In this review we are aiming to summarize the knowledge on amniotic fluid stem cells and highlight the most promising results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号