首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Dysregulation of long noncoding RNAs (lncRNAs) has been found in a large number of human cancers, including colon cancer. Therefore, the implementation of potential lncRNAs biomarkers with prognostic prediction value are very much essential. GSE39582 data set was downloaded from database of Gene Expression Omnibus. Re-annotation analysis of lncRNA expression profiles was performed by NetAffx annotation files. Univariate and multivariate Cox proportional analyses helped select prognostic lncRNAs. Algorithm of random survival forest-variable hunting (RSF-VH) together with stepwise multivariate Cox proportional analysis were performed to establish lncRNA signature. The log-rank test was carried out to analyze and compare the Kaplan-Meier survival curves of patients’ overall survival (OS). Receiver operating characteristic (ROC) analysis was used for comparing the survival prediction regarding its specificity and sensitivity based on lncRNA risk score, followed by calculating the values of area under the curve (AUC). The single-sample GSEA (ssGSEA) analysis was used to describe biological functions associated with this signature. Finally, to determine the robustness of this model, we used the validation sets including GSE17536 and The Cancer Genome Atlas data set. After re-annotation analysis of lncRNAs, a total of 14 lncRNA probes were obtained by univariate and multivariate Cox proportional analysis. Then, the RSF-VH algorithm and stepwise multivariate Cox analysis helped to build a five-lncRNA prognostic signature for colon cancer. The patients in group with high risk showed an obviously shorter survival time compared with patients in group with low risk with AUC of 0.75. In addition, the five-lncRNA signature can be used to independently predict the survival of patients with colon cancer. The ssGSEA analysis revealed that pathways such as extracellular matrix-receptor interaction was activated with an increase in risk score. These findings determined the strong power of prognostic prediction value of this five-lncRNA signature for colon cancer.  相似文献   

4.
《Genomics》2023,115(3):110621
BackgroundThe prognosis of CCA is extremely poor, making it one of the most lethal cancers. Therefore, there is a need to elucidate the pathogenic mechanisms of CCA. In this study, we aimed at identifying lncRNA-related prognostic signatures for CCA through bioinformatics analysis and further validated their functions in CCA tumorigenesis and progression.MethodsThe RNA-seq data of CCA were downloaded from public databases. Differentially expressed lncRNAs (DElncRNAs) were screened. Then, candidate OS- and DFS-related DElncRNAs were selected through Kaplan–Meier survival analysis. Furthermore, LASSO regression was performed to establish the OS and DFS signatures, respectively. Multivariate COX models and nomograms for overall survival (OS) and disease-free survival (DFS) were established based on OS/DFS signature and clinical data. Hub lncRNAs were identified and enrichment analyses were performed to explore their potential functions. Finally, in vitro and in vivo models were used to validate the effects of the hub lncRNAs in CCA tumorigenesis and progression.ResultsA total of 925 DElncRNAs were selected, of which six candidate OS-related lncRNAs and 15 candidate DFS-related lncRNAs were identified. The OS and DFS signatures were then established using four lncRNAs, respectively. We found that the OS signature and vascular invasion were independent risk factors for the OS of CCA, while the DFS signature, vascular invasion, and CA19–9 were independent risk factors for the DFS of CCA. Then, nomograms were established to achieve personalized CCA recurrence and death prediction. Furthermore, our study uncovered that MIR4435-2HG and GAPLINC might play crucial roles in CCA progression and be selected as hub lncRNAs. GO and KEGG enrichment analyses revealed that the two hub lncRNAs were closely related to CCA tumorigenesis. Finally, we demonstrated that MIR4435-2HG and GAPLINC can stimulate CCA proliferation and migration in vitro and in vivo.ConclusionsThe established OS and DFS signatures are independent risk factors for OS and DFS of CCA patients, respectively. MIR4435-2HG and GAPLINC were identified as hub lncRNAs. In vitro and in vivo models revealed that MIR4435-2HG and GAPLINC can prompt CCA progression, which might be novel prognostic biomarkers and therapeutic targets for CCA.  相似文献   

5.
Deregulated long noncoding RNAs (lncRNA) have been critically implicated in tumorigenesis and serve as novel diagnostic and prognostic biomarkers. Here we sought to develop a prognostic lncRNA signature in patients with head and neck squamous cell carcinoma (HNSCC). Original RNA-seq data of 499 HNSCC samples were retrieved from The Cancer Genome Atlas database, which was randomly divided into training and testing set. Univariate Cox regression survival analysis, robust likelihood-based survival model and random sampling iterations were applied to identify prognostic lncRNA candidates in the training cohort. A prognostic risk score was developed based on the Cox coefficient of four individual lncRNA imputed as follows: (0.14546 × expression level of RP11-366H4.1) + (0.27106 × expression level of LINC01123) + (0.54316 × expression level of RP11-110I1.14) + (−0.48794 × expression level of CTD-2506J14.1). Kaplan-Meier analysis revealed that patients with high-risk score had significantly reduced overall survival as compared with those with low-risk score when patients in training, testing, and validation cohorts were stratified into high- or low-risk subgroups. Multivariate survival analysis further revealed that this 4-lncRNA signature was a novel and important prognostic factor independent of multiple clinicopathological parameters. Importantly, ROC analyses indicated that predictive accuracy and sensitivity of this 4-lncRNA signature outperformed those previously well-established prognostic factors. Noticeably, prognostic score based on quantification of these 4-lncRNA via qRT-PCR in another independent HNSCC cohort robustly stratified patients into subgroups with high or low survival. Taken together, we developed a robust 4-lncRNA prognostic signature for HNSCC that might provide a novel powerful prognostic biomarker for precision oncology.  相似文献   

6.
The abnormal expression of microRNAs (miRNAs) or protein-coding genes (PCGs) have been found to be associated with the prognosis of hepatocellular carcinoma (HCC) patients. Using bioinformatics analysis methods including Cox’s proportional hazards regression analysis, the random survival forest algorithm, Kaplan–Meier, and receiver operating characteristic (ROC) curve analysis, we mined the gene expression profiles of 469 HCC patients from The Cancer Genome Atlas (n = 379) and Gene Expression Omnibus (GSE14520; n = 90) public database. We selected a signature comprising one protein-coding gene (PCG; DNA polymerase μ) and three miRNAs (hsa-miR-149-5p, hsa-miR-424-5p, hsa-miR-579-5p) with highest accurate prediction (area under the ROC curve [AUC] = 0.72; n = 189) from the training data set. The signature stratified patients into high- and low-risk groups with significantly different survival (median 27.9 vs. 55.2 months, log-rank test, p < 0.001) in the training data set, and its risk stratification ability were validated in the test data set (median 47.4 vs. 84.4 months, log-rank test, p = 0.03) and an independent data set (median 31.0 vs. 46.0 months, log-rank test, p = 0.01). Multivariable Cox regression analysis showed that the signature was an independent prognostic factor. And the signature was proved to have a better survival prediction power than tumor–node–metastasis (TNM) stage (AUC signature = 0.72/0.64/0.62 vs. AUC TNM = 0.65/0.61/0.61; p < 0.05). Moreover, we validated the expression of these prognostic genes from the PCG-miRNA signature in Huh-7 cell by real-time polymerase chain reaction. In conclusion, we found a signature that can predict survival of HCC patients and serve as a prognostic marker for HCC.  相似文献   

7.
A growing body of studies has demonstrated that long non‐coding RNA (lncRNA) are regarded as the primary section of the ceRNA network. This is thought to be the case owing to its regulation of protein‐coding gene expression by functioning as miRNA sponges. However, functional roles and regulatory mechanisms of lncRNA‐mediated ceRNA in cervical squamous cell carcinoma (CESC), as well as their use for potential prediction of CESC prognosis, remains unknown. The aberrant expression profiles of mRNA, lncRNA, and miRNA of 306 cervical squamous cancer tissues and three adjacent cervical tissues were obtained from the TCGA database. A lncRNA‐mRNA‐miRNA ceRNA network in CESC was constructed. Meanwhile, Gene Ontology (GO) and KEGG pathway analysis were performed using Cytoscape plug‐in BinGo and DAVID database. We identified a total of 493 lncRNA, 70 miRNA, and 1921 mRNA as differentially expressed profiles. An aberrant lncRNA‐mRNA‐miRNA ceRNA network was constructed in CESC, it was composed of 50 DElncRNA, 18 DEmiRNA, and 81 DEmRNA. According to the overall survival analysis, 3 out of 50 lncRNA, 10 out of 81 mRNA, and 1 out of 18 miRNA functioned as prognostic biomarkers for patients with CESC (P value < 0.05). We extracted the sub‐network in the ceRNA network and found that two novel lncRNA were recognized as key genes. These included lncRNA MEG3 and lncRNA ADAMTS9‐AS2. The present study provides a new insight into a better understanding of the lncRNA‐related ceRNA network in CESC, and the novel recognized ceRNA network will help us to improve our understanding of lncRNA‐mediated ceRNA regulatory mechanisms in the pathogenesis of CESC.  相似文献   

8.
Long noncoding RNAs (lncRNAs) show multiple functions, including immune response. Recently, the immune-related lncRNAs have been reported in some cancers. We first investigated the immune-related lncRNA signature as a potential target in hepatocellular carcinoma (HCC) survival. The training set (n = 368) and the independent external validation cohort (n = 115) were used. Immune genes and lncRNAs coexpression were constructed to identify immune-related lncRNAs. Cox regression analyses were perfumed to establish the immune-related lncRNA signature. Regulatory roles of this signature on cancer pathways and the immunologic features were investigated. The correlation between immune checkpoint inhibitors and this signature was examined. In this study, the immune-related lncRNA signature was identified in HCC, which could stratify patients into high- and low-risk groups. This immune-related lncRNA signature was correlated with disease progression and worse survival and was an independent prognostic biomarker. Our immune-related lncRNA signature was still a powerful tool in predicting survival in each stratum of age, gender, and tumor stage. This signature mediated cell cycle, glycolysis, DNA repair, mammalian target of rapamycin signaling, and immunologic characteristics (i.e., natural killer cells vs. Th1 cells down, etc). This signature was associated with immune cell infiltration (i.e., macrophages M0, Tregs, CD4 memory T cells, and macrophages M1, etc.,) and immune checkpoint blockade (ICB) immunotherapy-related molecules (i.e., PD-L1, PD-L2, and IDO1). Our findings suggested that the immune-related lncRNA signature had an important value for survival prediction and may have the potential to measure the response to ICB immunotherapy. This signature may guide the selection of the immunotherapy for HCC.  相似文献   

9.
Recent evidence suggests that long noncoding RNAs (lncRNAs) are essential regulators of many cancer-related processes, including cancer cell proliferation, invasion, and migration. There is thus a reason to believe that the detection of lncRNAs may be useful as a diagnostic and prognostic strategy for cancer detection, however, at present no effective genome-wide tests are available for clinical use, constraining the use of such a strategy. In this study, we performed a comprehensive assessment of lncRNAs expressed in samples in the head and neck squamous cell carcinoma (HNSCC) cohort available in The Cancer Genome Atlas database. A risk score (RS) model was constructed based on the expression data of these 15 lncRNAs in the validation data set of HNSCC patients and was subsequently validated in validation data set and the entire data set. We were able to stratify patients into high- and low-risk categories, using our lncRNA expression panel to determine an RS, with significant differences in overall survival (OS) between these two groups in our test set (median survival, 1.863 vs. 5.484 years; log-rank test, p < 0.001). We were able to confirm the predictive value of our 15-lncRNA signature using both a validation data set and a full data set, finding our signature to be reproducible and effective as a means of predicting HNSCC patient OS. Through the multivariate Cox regression and stratified analyses, we were further able to confirm that the predictive value of this RS was independent of other predictive factors such as clinicopathological parameters. The Gene set enrichment analysis revealed potential functional roles for these 15 lncRNAs in tumor progression. Our findings indicate that an RS established based on a panel of lncRNA expression signatures can effectively predict OS and facilitate patient stratification in HNSCC.  相似文献   

10.
Breast cancer, the most common cancer in women worldwide, is associated with high mortality. The long non-coding RNAs (lncRNAs) with a little capacity of coding proteins is playing an increasingly important role in the cancer paradigm. Accumulating evidences demonstrate that lncRNAs have crucial connections with breast cancer prognosis while the studies of lncRNAs in breast cancer are still in its primary stage. In this study, we collected 1052 clinical patient samples, a comparatively large sample size, including 13 159 lncRNA expression profiles of breast invasive carcinoma (BRCA) from The Cancer Genome Atlas database to identify prognosis-related lncRNAs. We randomly separated all of these clinical patient samples into training and testing sets. In the training set, we performed univariable Cox regression analysis for primary screening and played the model for Robust likelihood-based survival for 1000 times. Then 11 lncRNAs with a frequency more than 600 were selected for prediction of the prognosis of BRCA. Using the analysis of multivariate Cox regression, we established a signature risk-score formula for 11 lncRNA to identify the relationship between lncRNA signatures and overall survival. The 11 lncRNA signature was validated both in the testing and the complete set and could effectively classify the high-/low-risk group with different OS. We also verified our results in different stages. Moreover, we analyzed the connection between the 11 lncRNAs and the genes of ESR1, PGR, and Her2, of which protein products (ESR, PGR, and HER2) were used to classify the breast cancer subtypes widely. The results indicated correlations between 11 lncRNAs and the gene of PGR and ESR1. Thus, a prognostic model for 11 lncRNA expression was developed to classify the BRAC clinical patient samples, providing new avenues in understanding the potential therapeutic methods of breast cancer.  相似文献   

11.
BackgroundMany studies have demonstrated that autophagy plays a significant role in regulating tumor growth and progression. However, the effect of autophagy-related genes (ARGs) on the prognosis have rarely been analyzed in head and neck squamous cell carcinoma (HNSCC).MethodsWe obtained differentially expressed ARGs from HNSCC mRNA data in The Cancer Genome Atlas (TCGA) database. And then we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to explore the autophagy-related biological functions. The overall survival (OS)-related and disease specific survival (DSS)-related ARGs were identified by univariate Cox regression analyses. With these genes, we established OS-related and DSS-related risk signature by LASSO regression method, respectively. We validated the reliability of the risk signature with receiver operating characteristic (ROC) analysis, Kaplan-Meier survival curves, clinical correlation analysis, and nomogram. Then we analyzed relationships between risk signature and immune cell infiltration.ResultsWe established the prognostic signatures based on 14 ARGs for OS and 12 ARGs for DSS. The ROC curves, survival analysis, and nomogram validated the predictive accuracy of the models. Clinic correlation analysis showed that the risk group was closely related to Stage, pathological T stage, pathological N stage and human papilloma virus (HPV) subtype. Cox regression demonstrated that the risk score was an independent predictor for the prognosis of HNSCC patients. Furthermore, patients in low-risk score group exhibited higher immunescore and distinct immune cell infiltration than high-risk score group. And we further analysis revealed that the copy number alterations (CNAs) of ARGs-based signature affected the abundance of tumor-infiltrating immune cells.ConclusionIn this study, we identified novel autophagy-related signature for the prediction of OS and DSS in patients with HNSCC. Meanwhile, our study provides a novel sight to understand the role of autophagy and elucidate the important role of autophagy in tumor immune microenvironment (TIME) of HNSCC.  相似文献   

12.
Patients with laryngeal cancer with early relapse usually have a poor prognosis. In this study, we aimed to identify a multi-gene signature to improve the relapse prediction in laryngeal cancer. One microarray data set GSE27020 (training set, N = 109) and one RNA-sequencing data set (validation set, N = 85) were included into the analysis. In the training set, the microarray expression profile was re-annotated into an mRNA-long noncoding RNA (lncRNA) biphasic profile. Then, LASSO Cox regression model identified nine relapse-related RNA (eight mRNA and one lncRNA), and a risk score was calculated for each sample according to the model coefficients. Patients with high-risk showed poorer relapse-free survival than patients with low risk (hazard ratios (HR): 6.189, 95% confidence interval (CI): 3.075-12.460, P < 0.0001). The risk score demonstrated good accuracy in predicting the relapse (area under time-dependent receiver-operating characteristic (AUC): 0.859 at 1 year, 0.822 at 3 years, and 0.815 at 5 years). The results were validated in the validation set (HR: 3.762, 95% CI: 1.594-8.877, P = 0.011; AUC: 0.770 at 1 year, 0.769 at 3 years, and 0.728 at 5 years). The multivariate analysis reached consistent results after adjustment by multiple confounders. When compared with a 27-gene signature, a 2-lncRNA signature, and Tumor-Node-Metastasis stage, the risk score also showed better performance (P < 0.05). In conclusion, we successfully developed a robust mRNA-lncRNA signature that can accurately predict the relapse in laryngeal cancer.  相似文献   

13.
Liver cancer is still one of the leading causes of cancer-related death worldwide. This study is dedicated to developing a multi–long noncoding RNA (lncRNA) model for risk stratification and prognosis prediction on patients with hepatocellular carcinoma (HCC). We first downloaded lncRNA expression profiles and corresponding clinical information of patients with liver cancer from The Cancer Genome Atlas database. Differentially expressed (DE) lncRNAs between HCC samples and normal samples were identified. In total, 308 patients with HCC were randomly divided into a training group (n = 154) and a testing group (n = 154). Univariate Cox regression and least absolute shrinkage and selection operator Cox regression analyses were performed to select the best survival-related candidates from these DE lncRNAs in the training set. Seven lncRNAs (AC009005.2, RP11-363N22.3, RP11-932O9.10, RP11-572O6.1, RP11-190C22.8, RP11-388C12.8, and ZFPM2-AS1) were finally identified and used to construct a seven-lncRNA signature. The signature could classify patients into high-risk and low-risk groups with significantly different overall survival. The area under the curve of receiver operating characteristic curve for the signature to predict 5-year survival reached more than 0.75. Besides, the prognostic value of the seven-lncRNA signature was independent of conventional clinical factors. The predictive performance of the signature was further validated in the testing set and the whole set. Functional enrichment analysis indicated that the seven prognostic lncRNAs may be involved in several essential biological processes and pathways. The current study demonstrated the potential clinical implications of the seven-lncRNA signature for survival prediction of patients with HCC.  相似文献   

14.
Recent studies have demonstrated the utility and superiority of long non-coding RNAs (lncRNAs) as novel biomarkers for cancer diagnosis, prognosis, and therapy. In the present study, the prognostic value of lncRNAs in glioblastoma multiforme was systematically investigated by performing a genome-wide analysis of lncRNA expression profiles in 419 glioblastoma patients from The Cancer Genome Atlas (TCGA) project. Using survival analysis and Cox regression model, we identified a set of six lncRNAs (AC005013.5, UBE2R2-AS1, ENTPD1-AS1, RP11-89C21.2, AC073115.6, and XLOC_004803) demonstrating an ability to stratify patients into high- and low-risk groups with significantly different survival (median 0.899 vs. 1.611 years, p = 3.87e?09, log-rank test) in the training cohort. The six-lncRNA signature was successfully validated on independent test cohort of 219 patients with glioblastoma, and it revealed superior performance for risk stratification with respect to existing lncRNA-related signatures. Multivariate Cox and stratification analysis indicated that the six-lncRNA signature was an independent prognostic factor after adjusting for other clinical covariates. Further in silico functional analysis suggested that the six-lncRNA signature may be involved in the immune-related biological processes and pathways which are very well known in the context of glioblastoma tumorigenesis. The identified lncRNA signature had important clinical implication for improving outcome prediction and guiding the tailored therapy for glioblastoma patients with further prospective validation.  相似文献   

15.
Long noncoding RNAs (lncRNAs) have the main role in the tumorigenesis of breast cancer. In the present study, lncRNA expression profiling was collected to identify a lncRNA expression signature from the Gene Expression Omnibus database. An eight-lncRNA signature was established to predict the survival of patients with estrogen receptor (ER)-positive breast cancer receiving endocrine therapy. Patients were separated into a low-risk group and a high-risk group based on this signature. Patients in high-risk group have worse survival compared to those in low-risk group using Kaplan–Meier curve analysis with log-rank test. Receiver operating characteristic analysis suggested good diagnostic efficiency of the eight-lncRNA signature. When adjusting the clinical features, including age, grade, lymph node status, and tumor size, this signature was independently associated with the relapse-free survival. The prognostic value of the lncRNA prognostic model was then validated in validation sets. When validated in a cohort of patients treated with neoadjuvant chemotherapy and endocrine therapy, this signature demonstrated good performance as well. Besides, we have built a nomogram that integrated the conventional clinicopathological features and the eight-lncRNA-based signature. To sum up, our results indicated that the eight-lncRNA prognostic model was a reliable tool to group patients at high and low risk of disease relapse. This signature may have possible implication in prognostic evaluations of patients with ER-positive breast cancer receiving endocrine therapy.  相似文献   

16.
In this study, we purpose to investigate a novel five-gene signature for predicting the prognosis of patients with laryngeal cancer. The laryngeal cancer datasets were obtained from The Cancer Genome Atlas (TCGA). Both univariate and multivariate Cox regression analysis was applied to screening for prognostic differential expressed genes (DEGs), and a novel gene signature was obtained. The performance of this Cox regression model was tested by receiver operating characteristic (ROC) curves and area under the curve (AUC). Further survival analysis for each of the five genes was carried out through the Kaplan-Meier curve and Log-rank test. Totally, 622 DEGs were screened from the TCGA datasets in this study. We construct a five-gene signature through Cox survival analysis. Patients were divided into low- and high-risk groups depending on the median risk score, and a significant difference of the 5-year overall survival was found between these two groups (P < .05). ROC curves verified that this five-gene signature had good performance to predict the prognosis of laryngeal cancer (AUC = 0.862, P < .05). In conclusion, the five-gene signature consist of EMP1, HOXB9, DPY19L2P1, MMP1, and KLHDC7B might be applied as an independent prognosis predictor of laryngeal cancer.  相似文献   

17.
Currently, traditional predictors of prognosis (tumor size, nodal status, progesterone receptor [PR], estrogen receptor [ER], or human epidermal growth factor receptor-2 [HER2]) are insufficient for precise survival prediction for triple-negative breast cancer (TNBC). Long noncoding RNAs (lncRNAs) have been observed to exert critical functions in cancer, including in TNBC. Nevertheless, systematically tracking expression-based lncRNA biomarkers based on the sequence data for the prediction of prognosis in TNBC has not yet been investigated. To ascertain whether biomarkers exist that can distinguish TNBC from adjacent normal tissue or nTNBC, we implemented a comprehensive analysis of lncRNA expression profiles and clinical data of 1097 BC samples from The Cancer Genome Atlas database. A total of 1510 differentially expressed lncRNAs in normal and TNBC samples were extracted. Similarly, 672 differentially expressed lncRNAs between nTNBC and TNBC samples were detected. The receiver operating characteristic curve analysis indicated that three upregulated lncRNAs (AC091043.1, AP000924.1, and FOXCUT) may be of strong diagnostic value for predicting the existence of TNBC in the training and validation sets (area under the curve (AUC > 0.85). Kaplan-Meier analysis demonstrated that the other three lncRNAs (AC010343.3, AL354793.1, and FGF10-AS1) were associated with the prognosis of TNBC patients (P < 0.05). We used the three overall survival (OS)-related lncRNAs to establish a three-lncRNA signature. Multivariate Cox regression analysis suggested that the three-lncRNA signature was a prognostic factor independent of other clinical variables ( P < 0.01) for predicting OS in TNBC patients that could be utilized to classify patients into high- or low-risk subgroups. Our results might provide efficient signatures for clinical diagnosis and prognostic evaluation of TNBC.  相似文献   

18.
Plenty of evidence has suggested that long noncoding RNAs (lncRNAs) play a vital role in competing endogenous RNA (ceRNA) networks. Poorly differentiated hepatocellular carcinoma (PDHCC) is a malignant phenotype. This paper aimed to explore the effect and the underlying regulatory mechanism of lncRNAs on PDHCC as a kind of ceRNA. Additionally, prognosis prediction was assessed. A total of 943 messenger RNAs (mRNAs), 86 miRNAs, and 468 lncRNAs that were differentially expressed between 137 PDHCCs and 235 well-differentiated HCCs were identified. Thereafter, a ceRNA network related to the dysregulated lncRNAs was established according to bioinformatic analysis and included 29 lncRNAs, 9 miRNAs, and 96 mRNAs. RNA-related overall survival (OS) curves were determined using the Kaplan-Meier method. The lncRNA ARHGEF7-AS2 was markedly correlated with OS in HCC (P = .041). Moreover, Cox regression analysis revealed that patients with low ARHGEF7-AS2 expression were associated with notably shorter survival time (P = .038). In addition, the area under the curve values of the lncRNA signature for 1-, 3-, and 5-year survival were 0.806, 0.741, and 0.701, respectively. Furthermore, a lncRNA nomogram was established, and the C-index of the internal validation was 0.717. In vitro experiments were performed to demonstrate that silencing ARHGEF7-AS2 expression significantly promoted HCC cell proliferation and migration. Taken together, our findings shed more light on the ceRNA network related to lncRNAs in PDHCC, and ARHGEF7-AS2 may be used as an independent biomarker to predict the prognosis of HCC.  相似文献   

19.
Clear cell renal cell carcinoma (ccRCC) is the main subtype of renal cell carcinoma with varied prognosis. We aimed to identify and assess the possible prognostic long noncoding RNA (lncRNA) biomarkers. LncRNAs expression data and corresponding clinical information of 619 ccRCC patients were downloaded from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Differentially expressed genes analysis, univariate Cox regression, the least absolute shrinkage and selection operator Cox regression model were utilized to identify hub lncRNAs. Multivariate Cox regression was used to establish the risk model. Statistical analysis was performed using R 3.5.3. The expression value of five lncRNAs and the risk-score levels were significantly associated with a survival prognosis of ccRCC patients (all P < .001). In the TCGA validation cohort, the area under the curve (AUC) for the integrated nomogram was 0.905 and 0.91 for 3-, 5-year prediction separately. The AUC reached up to 0.757 in an independent ICGC cohort. Besides, the calibration plots also illustrated well curve-fitting between observation values and predictive values. Weighted gene co-expression network analysis and subsequent pathway analysis revealed that the PI3K-Akt-mTOR and hypoxia-inducible factor signaling crosstalk might function as the most essential mechanisms related to the five-lncRNAs signature. Our study suggested that lncRNA AC009654.1, AC092490.2, LINC00524, LINC01234, and LINC01885 were significantly associated with ccRCC prognosis. The prognostic model based on this five lncRNA may predict the overall survival of ccRCC.  相似文献   

20.
Despite the prognostic value of IDH and other gene mutations found in diffuse glioma, markers that judge individual prognosis of patients with diffuse lower‐grade glioma (LGG) are still lacking. This study aims to develop an expression‐based microRNA signature to provide survival and radiotherapeutic response prediction for LGG patients. MicroRNA expression profiles and relevant clinical information of LGG patients were downloaded from The Cancer Genome Atlas (TCGA; the training group) and the Chinese Glioma Genome Atlas (CGGA; the test group). Cox regression analysis, random survival forests‐variable hunting (RSFVH) screening and receiver operating characteristic (ROC) were used to identify the prognostic microRNA signature. ROC and TimeROC curves were plotted to compare the predictive ability of IDH mutation and the signature. Stratification analysis was conducted in patients with radiotherapy information. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to explore the biological function of the signature. We identified a five‐microRNA signature that can classify patients into low‐risk or high‐risk group with significantly different survival in the training and test datasets (P < 0.001). The five‐microRNA signature was proved to be superior to IDH mutation in survival prediction (AUCtraining = 0.688 vs 0.607). Stratification analysis found the signature could further divide patients after radiotherapy into two risk groups. GO and KEGG analyses revealed that microRNAs from the prognostic signature were mainly enriched in cancer‐associated pathways. The newly discovered five‐microRNA signature could predict survival and radiotherapeutic response of LGG patients based on individual microRNA expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号