首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Reproductive biology》2020,20(1):25-32
The aim of this study was to demonstrate the effects of vitamin D treatment on ultrastructural changes and AMHR2 expression in the ovary in PCOS rat model. A total of 24 female prepubertal rats were divided into 3 groups. In group 1, sesame oil was injected and used as control group. In group 2, PCOS was created by the injection of 6 mg/kg/day DHEA. In group 3, PCOS was created and 120 ng/100 g 1,25 (OH)2D3 treatment was performed. At the end of the 28th day, the blood samples were collected. The ovarian tissues were obtained for electron microscopic and immunohistochemical examinations.Serum AMH, testosterone, FSH, LH levels and LH/FSH ratios were higher in the PCOS group compared to the control group and decreased in the treatment group compared to the PCOS group. AMHR2 expression was increased in atretic and premature luteinizate antral follicles in the PCOS group compared to the control group, and decreased in the treatment group compared to the PCOS group. PCOS group electron micrographs showed degenerative changes in developing follicles, cystic follicles characterised with granulosa cell layer attenuation and thickening of the theca cell layer, and lipid accumulation in the interstitial cells. Structural changes observed in the PCOS group were improved with vitamin D treatment.As a result, there is an interaction between PCOS, AMH serum levels and AMHR2 in the ovarian follicles. Vitamin D has a positive effect on hormonal and structural changes in the PCOS group. We concluded that vitamin D supplementation may be beneficial in PCOS patients.  相似文献   

2.
It is estimated that 1 billion people around the world are vitamin D deficient. Vitamin D deficiency has been linked to various inflammatory diseases. However, the mechanism by which vitamin D reduces inflammation remains poorly understood. In this study, we investigated the inhibitory effects of physiologic levels of vitamin D on LPS-stimulated inflammatory response in human blood monocytes and explored potential mechanisms of vitamin D action. We observed that two forms of the vitamin D, 1,25(OH)(2)D(3), and 25(OH)D(3), dose dependently inhibited LPS-induced p38 phosphorylation at physiologic concentrations, IL-6 and TNF-α production by human monocytes. Upon vitamin D treatment, the expression of MAPK phosphatase-1 (MKP-1) was significantly upregulated in human monocytes and murine bone marrow-derived macrophages (BMM). Increased binding of the vitamin D receptor and increased histone H4 acetylation at the identified vitamin D response element of the murine and human MKP-1 promoters were demonstrated. Moreover, in BMM from MKP1(-/-) mice, the inhibition of LPS-induced p38 phosphorylation by vitamin D was completely abolished. Vitamin D inhibition of LPS-induced IL-6 and TNF-α production by BMM from MKP-1(-/-) mice was significantly reduced as compared with wild-type mice. In conclusion, this study identified the upregulation of MKP-1 by vitamin D as a novel pathway by which vitamin D inhibits LPS-induced p38 activation and cytokine production in monocytes/macrophages.  相似文献   

3.
Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30–35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer''s disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances.  相似文献   

4.
5.
We investigated the role of mitochondrial reactive oxygen species (ROS) in the response of macrophages to lipopolysaccharide (LPS) using RAW 264.7 cells and their ρ(o) cells lacking mitochondria. Mitochondrial density, respiratory activity and related proteins in ρ(o) cells were significantly lower than those in RAW cells. LPS rapidly stimulated mitochondrial ROS prior to cytokine secretion, such as TNF-α and IL-6, from RAW 264.7 cells by activating the MAPK pathway, while the response was attenuated in ρ(o) cells. Exposure of ρ(o) cells to H(2)O(2) partially restored the secretion of cytokines induced by LPS. These results suggest that mitochondrial density and/or the respiratory state contribute to intracellular oxidative stress, which is responsible for the stimulation of LPS-induced MAPK signaling to enhance cytokine release from macrophages.  相似文献   

6.
Mitochondrial dysfunction is a common consequence of ischemia-reperfusion and drug injuries. For example, sublethal injury of renal proximal tubular cells (RPTCs) with the model oxidant tert-butylhydroperoxide (TBHP) causes mitochondrial injury that recovers over the course of six days. Although regeneration of mitochondrial function is integral to cell repair and function, the signaling pathway of mitochondrial biogenesis following oxidant injury has not been examined. A 10-fold overexpression of the mitochondrial biogenesis regulator PPAR-gamma cofactor-1alpha (PGC-1alpha) in control RPTCs resulted in a 52% increase in mitochondrial number, a 27% increase in respiratory capacity, and a 30% increase in mitochondrial protein markers, demonstrating that PGC-1alpha mediates mitochondrial biogenesis in RPTCs. RPTCs sublethally injured with TBHP exhibited a 50% decrease in mitochondrial function and increased mitochondrial autophagy. Compared with the controls, PGC-1alpha levels increased 12-fold on days 1, 2, and 3 post-injury and returned to base line on day 4 as mitochondrial function returned. Inhibition p38 MAPK blocked the up-regulation of PGC-1alpha following oxidant injury, whereas inhibition of calcium-calmodulin-dependent protein kinase, calcineurin A, nitric-oxide synthase, and phosphoinositol 3-kinase had no effect. The epidermal growth factor receptor (EGFR) was activated following TBHP exposure, and the EGFR inhibitor AG1478 blocked the up-regulation of PGC-1alpha. Additional inhibitor studies revealed that the sequential activation of Src, p38 MAPK, EGFR, and p38 MAPK regulate the expression of PGC-1alpha following oxidant injury. In contrast, although Akt was activated following oxidant injury, it did not play a role in PGC-1alpha expression. We suggest that mitochondrial biogenesis following oxidant injury is mediated by p38 and EGFR activation of PGC-1alpha.  相似文献   

7.
Liver fibrosis is a grievous global challenge, where hepatic stellate cells (HSCs) activation is a paramount step. This study analyzed the mechanism of Tβ4 in ameliorating liver fibrosis via the MAPK/NF-κB pathway. The liver fibrosis mouse models were established via bile duct ligation (BDL) and verified by HE and Masson staining. TGF-β1-induced activated LX-2 cells were employed in vitro experiments. Tβ4 expression was determined using RT-qPCR, HSC activation markers were examined using Western blot analysis, and ROS levels were tested via DCFH-DA kits. Cell proliferation, cycle, and migration were examined by CCK-8, flow cytometry, and Transwell assays, respectively. Effects of Tβ4 on liver fibrosis, HSC activation, ROS production, and HSC growth were analyzed after transfection of constructed Tβ4-overexpressing lentiviral vectors. MAPK/NF-κB-related protein levels were tested using Western blotting and p65 expression in the nucleus was detected through immunofluorescence. Regulation of MAPK/NF-κB pathway in TGF-β1-induced LX-2 cells was explored by adding MAPK activator U-46619 or inhibitor SB203580. Furthermore, its regulating in liver fibrosis was verified by treating BDL mice overexpressing Tβ4 with MAPK inhibitor or activator. Tβ4 was downregulated in BDL mice. Tβ4 overexpression inhibited liver fibrosis. In TGF-β1-induced fibrotic LX-2 cells, Tβ4 was reduced and cell migration and proliferation were enhanced with elevated ROS levels, while Tβ4 overexpression suppressed cell migration and proliferation. Tβ4 overexpression blocked the MAPK/NF-κB pathway activation by reducing ROS production, thus inhibiting liver fibrosis in TGF-β1 induced LX-2 cells and BDL mice. Tβ4 ameliorates liver fibrosis by impeding the MAPK/NF-κB pathway activation.  相似文献   

8.
Saturated free fatty acids (FFAs), e.g. palmitate, have long been shown to induce toxicity and cell death in various types of cells. In this study, we demonstrate that cAMP synergistically amplifies the effect of palmitate on the induction of cell death in human hepatocellular carcinoma cell line, HepG2 cells. Elevation of cAMP level in palmitate-treated cells led to enhanced mitochondrial fragmentation, mitochondrial reactive oxygen species (ROS) generation and mitochondrial biogenesis. Mitochondrial fragmentation precedes mitochondrial ROS generation and mitochondrial biogenesis, and may contribute to mitochondrial ROS overproduction and subsequent mitochondrial biogenesis. Fragmentation of mitochondria also facilitated the release of cytotoxic mitochondrial proteins, such as Smac, from the mitochondria and subsequent activation of caspases. However, cell death induced by palmitate and cAMP was caspase-independent and mainly necrotic.  相似文献   

9.
Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m-chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia.  相似文献   

10.
《Reproductive biology》2021,21(4):100563
Increased production of reactive oxygen species (ROS) in granulosa cells (GCs) causes oxidative stress (OS) and plays a role in pathogenesis of polycystic ovary syndrome (PCOS). Sulforaphane (SFN) has received a great deal of attention as potent antioxidant because of its ability to induce expression of antioxidant enzymes through nuclear factor (erythroid-derived 2)-like 2 (NRF2) signaling pathway. Therefore, the present study was done to investigate the protective effect of SFN against OS in granulosa-lutein cells (GLCs) of patients with PCOS through activation of AMP-activated protein kinase (AMPK)/AKT/NRF2 signaling pathway. GLCs were isolated from patients with PCOS and healthy fertile women, as control group, during egg retrieval procedure. Level of intracellular ROS and apoptosis was determined in the isolated cells. For investigating the protective effect of SFN against ROS production and apoptosis in GLCs, the cells were cultured for 24 h in the presence or absence of SFN. Finally, expression of AMPK, AKT, and NRF2 proteins and genes was evaluated by western blotting and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The results indicated the increased ROS and apoptosis levels in GLCs isolated from patients with PCOS compared to the control group. Addition of SFN to culture medium of GLCs of patients with PCOS reduced intracellular ROS and apoptosis levels, and increased expression of AMPK, AKT, and NRF2 proteins and genes. Our findings demonstrated the protective effect of SFN against OS by lowering level of ROS and apoptosis possibly through activation of AMPK, AKT, and NRF2 proteins and genes expression.  相似文献   

11.
Coenzyme Q10 (CoQ10) acts by scavenging reactive oxygen species to protect neuronal cells against oxidative stress in neurodegenerative diseases. The present study was designed to examine whether CoQ10 was capable of protecting astrocytes from reactive oxygen species (ROS) mediated damage. For this purpose, ultraviolet B (UVB) irradiation was used as a tool to induce ROS stress to cultured astrocytes. The cells were treated with 10 and 25 μg/ml of CoQ10 for 3 or 24 h prior to the cells being exposed to UVB irradiation and maintained for 24 h post UVB exposure. Cell viability was assessed by MTT conversion assay. Mitochondrial respiration was assessed by respirometer. While superoxide production and mitochondrial membrane potential were measured using fluorescent probes, levels of cytochrome C (cyto-c), cleaved caspase-9, and caspase-8 were detected using Western blotting and/or immunocytochemistry. The results showed that UVB irradiation decreased cell viability and this damaging effect was associated with superoxide accumulation, mitochondrial membrane potential hyperpolarization, mitochondrial respiration suppression, cyto-c release, and the activation of both caspase-9 and -8. Treatment with CoQ10 at two different concentrations started 24 h before UVB exposure significantly increased the cell viability. The protective effect of CoQ10 was associated with reduction in superoxide, normalization of mitochondrial membrane potential, improvement of mitochondrial respiration, inhibition of cyto-c release, suppression of caspase-9. Furthermore, CoQ10 enhanced mitochondrial biogenesis. It is concluded that CoQ10 may protect astrocytes through suppression of oxidative stress, prevention of mitochondrial dysfunction, blockade of mitochondria-mediated cell death pathway, and enhancement of mitochondrial biogenesis.  相似文献   

12.
《Reproductive biology》2020,20(1):63-74
In this study, we investigated the mechanism of oxidative damage induced by nicotine and the efficacy of vitamin E, an integral component of cellular membranes, against the damage in follicular/granulosa cells of rat ovaries. The animals were randomly divided into 4 groups; control, nicotine, nicotine + vitaminE, vitamin E (n = 8, per each group). Nicotine and vitamin E were administrated intraperitoneally 1 mg/kg/day and 200 mg/kg/day, respectively, once daily for 2 weeks. Nicotine increased lipid peroxide levels such as lipid peroxide (LPO) and malondialdehyde (MDA) in serum, 4-hydroxynonenal (4-HNE) in granulosa cells and apoptotic granulosa cells in the ovary. Positive correlation occurred between the findings of LPO markers and TUNEL labeling. Level of 17-β estradiol (E2), number of follicles and granulosa cell proliferation decreased with nicotine treatment and negatively correlated with LPO levels and apoptosis in granulosa cells. Ultrastructural study of nicotine treated rat ovaries showed mitochondrial damage and autophagosomes in the granulosa cells. The administration of nicotine and vitamin E together, revealed an increase in E2 level, granulosa cell proliferation and the number of healthy follicles associated with decrease in LPO, MDA, 4-HNE levels and TUNEL reactivity in a manner correlated with each other, compared to the nicotine group. Vitamin E showed to alleviate mitochondrial damage and decrease the number of autophagosomes in granulosa cells. These results suggest that lipid peroxidation may be one of the nicotine’ damage mechanisms on folliculogenesis and vitamin E may prevent nicotine-induced follicular damage through reducing lipid peroxidation level in granulosa cells.  相似文献   

13.
14.
15.
Mitochondria and ageing: winning and losing in the numbers game   总被引:3,自引:0,他引:3  
Mitochondrial dysfunction has long been considered a key mechanism in the ageing process but surprisingly little attention has been paid to the impact of mitochondrial number or density within cells. Recent reports suggest a positive association between mitochondrial density, energy homeostasis and longevity. However, mitochondrial number also determines the number of sites generating reactive oxygen species (ROS) and we suggest that the links between mitochondrial density and ageing are more complex, potentially acting in both directions. The idea that increased density, especially when combined with mitochondrial dysfunction, might accelerate ageing is supported by a negative correlation between mitochondrial density and maximum longevity in an interspecies comparison in mammals, and by evidence for an intimate interconnection between cellular ROS levels, mitochondrial density and cellular ageing. Recent data suggest that retrograde response, which activates mitochondrial biogenesis, accompanies cellular ageing processes. We hypothesise that increased mitochondrial biogenesis, and possibly also impaired degradation and segregation of mitochondria, if occurring as adaptation to pre-existing mitochondrial dysfunction, might aggravate ROS production and thus actively contribute to ageing.  相似文献   

16.
17.
18.
Supplementation of selenium has been shown to protect cells against free radical mediated cell damage. The objectives of this study are to examine whether supplementation of selenium stimulates mitochondrial biogenesis signaling pathways and whether selenium enhances mitochondrial functional performance. Murine hippocampal neuronal HT22 cells were treated with sodium selenite for 24 hours. Mitochondrial biogenesis markers, mitochondrial respiratory rate and activities of mitochondrial electron transport chain complexes were measured and compared to non-treated cells. The results revealed that treatment of selenium to the HT22 cells elevated the levels of nuclear mitochondrial biogenesis regulators PGC-1α and NRF1, as well as mitochondrial proteins cytochrome c and cytochrome c oxidase IV (COX IV). These effects are associated with phosphorylation of Akt and cAMP response element-binding (CREB). Supplementation of selenium significantly increased mitochondrial respiration and improved the activities of mitochondrial respiratory complexes. We conclude that selenium activates mitochondrial biogenesis signaling pathway and improves mitochondrial function. These effects may be associated with modulation of AKT-CREB pathway.  相似文献   

19.
Vitamin D(3) inhibits cell growth and induces apoptosis in several human cancer lines in vitro and in vivo. However, little is known about the molecular events involved in vitamin D(3)-induced apoptosis. Here, we demonstrate that the growth-promoting/pro-survival signaling molecule mitogen-activated protein kinase kinase (MEK) is cleaved in a caspase-dependent manner in murine squamous cell carcinoma (SCC) cells induced to undergo apoptosis by treatment with vitamin D(3). Cleavage resulted in nearly complete loss of full-length MEK and ERK1/2 phosphorylation. ERK1/2 expression was affected only slightly. The phosphorylation and expression of Akt, a kinase regulating a second cell survival pathway, was also inhibited after treatment with vitamin D(3). However, the pro-apoptotic signaling molecule MEKK-1 was up-regulated in both apoptotic and non-apoptotic cells with greater induction and partial N-terminal proteolysis of MEKK-1 observed in apoptotic cells. In contrast to vitamin D(3), cisplatin and etoposide down-regulated Akt levels only modestly, did not promote significant loss of MEK expression, and did not up-regulate MEKK-1. We propose that vitamin D(3) induces apoptosis in SCC cells by a unique mechanism involving selective caspase-dependent MEK cleavage and up-regulation of MEKK-1. Additional evidence is provided that vitamin D(3)-induced apoptosis may be mediated via p38 MAPK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号