首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Skeletal myoblast fusion in vitro requires the expression of connexin43 (Cx43) gap junction channels. However, gap junctions are rapidly downregulated after the initiation of myoblast fusion in vitro and in vivo. In this study we show that this downregulation is accomplished by two related microRNAs, miR-206 and miR-1, that inhibit the expression of Cx43 protein during myoblast differentiation without altering Cx43 mRNA levels. Cx43 mRNA contains two binding sites for miR-206/miR-1 in its 3′-untranslated region, both of which are required for efficient downregulation. While it has been demonstrated before that miR-1 is involved in myogenesis, in this work we show that miR-206 is also upregulated during perinatal skeletal muscle development in mice in vivo and that both miR-1 and miR-206 downregulate Cx43 expression during myoblast fusion in vitro. Proper development of singly innervated muscle fibers requires muscle contraction and NMJ terminal selection and it is hypothesized that prolonged electrical coupling via gap junctions may be detrimental to this process. This work details the mechanism by which initial downregulation of Cx43 occurs during myogenesis and highlights the tight control mechanisms that are utilized for the regulation of gap junctions during differentiation and development.  相似文献   

3.
Pacu (Piaractus mesopotamicus) is a Brazilian fish with a high economic value in pisciculture due to its rusticity and fast growth. Postnatal growth of skeletal muscle in fish occurs by hyperplasia and/or hypertrophy, processes that are dependent on the proliferation and differentiation of myoblasts. A class of small noncoding RNAs, known as microRNAs (miRNAs), represses the expression of target mRNAs, and many studies have demonstrated that miR-1, miR-133, miR-206 and miR-499 regulate different processes in skeletal muscle through the mRNA silencing of hdac4 (histone deacetylase 4), srf (serum response factor), pax7 (paired box 7) and sox6 ((sex determining region Y)-box 6), respectively. The aim of our work was to evaluate the expression of these miRNAs and their putative target mRNAs in fast- and slow-twitch skeletal muscle of pacu during growth. We used pacus in three different development stages: larval (aged 30 days), juvenile (aged 90 days and 150 days) and adult (aged 2 years). To complement our study, we also performed a pacu myoblast cell culture, which allowed us to investigate miRNA expression in the progression from myoblast proliferation to differentiation. Our results revealed an inverse correlation between the expression of the miRNAs and their target mRNAs, and there was evidence that miR-1 and miR-206 may regulate the differentiation of myoblasts, whereas miR-133 may regulate the proliferation of these cells. miR-499 was highly expressed in slow-twitch muscle, which suggests its involvement in the specification of the slow phenotype in muscle fibers. The expression of these miRNAs exhibited variations between different development stages and between distinct muscle twitch phenotypes. This work provides the first identification of miRNA expression profiles in pacu skeletal muscle and suggests an important role of these molecules in muscle growth and in the maintenance of the muscle phenotype.  相似文献   

4.
The expression of three microRNAs, miR-1, miR-206 and miR-133 is restricted to skeletal myoblasts and cardiac tissue during embryo development and muscle cell differentiation, which suggests a regulation by muscle regulatory factors (MRFs). Here we show that inhibition of C2C12 muscle cell differentiation by FGFs, which interferes with the activity of MRFs, suppressed the expression of miR-1, miR-206 and miR-133. To further investigate the role of myogenic regulators (MRFs), Myf5, MyoD, Myogenin and MRF4 in the regulation of muscle specific microRNAs we performed gain and loss-of-function experiments in vivo, in chicken and mouse embryos. We found that directed expression of MRFs in the neural tube of chicken embryos induced ectopic expression of miR-1 and miR-206. Conversely, the lack of Myf5 but not of MyoD resulted in a loss of miR-1 and miR-206 expression. Taken together our results demonstrate differential requirements of distinct MRFs for the induction of microRNA gene expression during skeletal myogenesis.  相似文献   

5.
6.
7.
8.
microRNAs (miRNAs) are short non-coding RNAs that can mediate changes in gene expression and are required for the formation of skeletal muscle (myogenesis). With the goal of identifying novel miRNA biomarkers of muscle disease, we profiled miRNA expression using miRNA-seq in the gastrocnemius muscles of dystrophic mdx4cv mice. After identifying a down-regulation of the miR-30 family (miR-30a-5p, -30b, -30c, -30d and -30e) when compared to C57Bl/6 (WT) mice, we found that overexpression of miR-30 family miRNAs promotes differentiation, while inhibition restricts differentiation of myoblasts in vitro. Additionally, miR-30 family miRNAs are coordinately down-regulated during in vivo models of muscle injury (barium chloride injection) and muscle disuse atrophy (hindlimb suspension). Using bioinformatics tools and in vitro studies, we identified and validated Smarcd2, Snai2 and Tnrc6a as miR-30 family targets. Interestingly, we show that by targeting Tnrc6a, miR-30 family miRNAs negatively regulate the miRNA pathway and modulate both the activity of muscle-specific miR-206 and the levels of protein synthesis. These findings indicate that the miR-30 family may be an interesting biomarker of perturbed muscle homeostasis and muscle disease.  相似文献   

9.
10.
miR-1, miR-133a, and miR-206 are muscle-specific microRNAs expressed in skeletal muscles and have been shown to contribute to muscle development. To gain insight into the pathophysiological roles of these three microRNAs in dystrophin-deficient muscular dystrophy, their expression in the tibialis anterior (TA) muscles of mdx mice and CXMD(J) dogs were evaluated by semiquantitative RT-PCR and in situ hybridization. Their temporal and spatial expression patterns were also analyzed in C2C12 cells during muscle differentiation and in cardiotoxin (CTX)-injured TA muscles to examine how muscle degeneration and regeneration affect their expression. In dystrophic TA muscles of mdx mice, miR-206 expression was significantly elevated as compared to that in control TA muscles of age-matched B10 mice, whereas there were no differences in miR-1 or miR-133a expression between B10 and mdx TA muscles. On in situ hybridization analysis, intense signals for miR-206 probes were localized in newly formed myotubes with centralized nuclei, or regenerating muscle fibers, but not in intact pre-degenerated fibers or numerous small mononucleated cells, possibly proliferating myoblasts and inflammatory infiltrates. Similar increased expression of miR-206 was also found in C2C12 differentiation and CTX-induced regeneration, in which differentiated myotubes or regenerating fibers showed abundant expression of miR-206. However, CXMD(J) TA muscles contained smaller amounts of miR-206, miR-1, and miR-133a than controls. They exhibited more severe and more progressive degenerative alterations than mdx TA muscles. Taken together, these observations indicated that newly formed myotubes showed markedly increased expression of miR-206, which might reflect active regeneration and efficient maturation of skeletal muscle fibers.  相似文献   

11.
Abstract Previous studies on wild black bears (Ursus americanus) have shown that skeletal muscle morphology, composition, and overall force-generating capacity do not differ drastically between seasons despite prolonged inactivity during hibernation. However, the amount and characteristics of the seasonal variations were not consistent in these studies. The goals of this study were to compare the amount of muscle atrophy in captive brown bears (Ursus arctos) with that observed in wild black bears and measure seasonal differences in twitch characteristics. Samples from the biceps femoris muscle were collected during the summer and winter. Protein concentration, fiber-type composition, and fiber cross-sectional area were measured along with twitch characteristics. The protein concentration of the winter samples was 8.2% lower than that of the summer samples; fiber cross-sectional area and the relative proportion of fast and slow fibers remained unchanged between seasons. Myosin heavy chain isoforms I, IIa, and IIx were identified by immunoblotting and electrophoresis, and the proportions did not change between seasons. The half-rise time in the twitch contractions increased in winter relative to summer samples, which is unexpected under disuse conditions. These results agreed with a study that showed minimal skeletal muscle atrophy between seasons in wild black bears.  相似文献   

12.
miR-206, a member of the so-called myomiR family, is largely acknowledged as a specific, positive regulator of skeletal muscle differentiation. A growing body of evidence also suggests a tumor suppressor function for miR-206, as it is frequently downregulated in various types of cancers. In this study, we show that miR-206 directly targets cyclin D1 and contributes to the regulation of CCND1 gene expression in both myogenic and non-muscle, transformed cells. We demonstrate that miR-206, either exogenous or endogenous, reduces cyclin D1 levels and proliferation rate in C2C12 cells without promoting differentiation, and that miR-206 knockdown in terminally differentiated C2C12 cells leads to cyclin D1 accumulation in myotubes, indicating that miR-206 might be involved in the maintenance of the post-mitotic state. Targeting of cyclin D1 might also account, at least in part, for the tumor-suppressor activity suggested for miR-206 in previous studies. Accordingly, the analysis of neoplastic and matched normal lung tissues reveals that miR-206 downregulation in lung tumors correlates, in most cases, with higher cyclin D1 levels. Moreover, gain-of-function experiments with cancer-derived cell lines and with in vitro transformed cells indicate that miR-206-mediated cyclin D1 repression is directly coupled to growth inhibition. Altogether, our data highlight a novel activity for miR-206 in skeletal muscle differentiation and identify cyclin D1 as a major target that further strengthens the tumor suppressor function proposed for miR-206.  相似文献   

13.
Aging skeletal muscle shows perturbations in metabolic functions. MicroRNAs have been shown to play a critical role in aging and metabolic functions of skeletal muscle. MicroRNA-34a (miR-34a) is implicated in the brain and cardiac aging, however, its role in aging muscle is unclear. We analyzed levels of miR-34a, ceramide kinase (CERK) and other insulin signaling molecules in skeletal muscle from old mice. In addition to in vivo model, levels of these molecules were also analyzed in myoblast derived from insulin resistant (IR) humans and C2C12 myoblasts overexpressing mir-34a. Our results show that miR-34a is elevated in the muscles of 2-year-old mice and in the myoblasts of IR humans. Overexpression of miR-34a in C2C12 myoblasts leads to alterations in the insulin signaling pathway, which were rescued by its antagonism. Our analyses revealed that miR-34a targets CERK resulting in ceramide accumulation, activation of PP2A and the pJNK pathway in muscle and C2C12 myoblasts. Also, myostatin (Mstn) levels were increased in 2-year-old mouse muscle and Mstn treatment upregulated miR-34a in C2C12 myoblasts. In addition, miR-34a expression and ceramide levels did not increase during aging in Mstn−/− mice muscle. In summary, we, therefore, propose that Mstn levels increase in aging muscle and upregulate miR-34a, which inhibits CERK resulting in increased ceramide levels. This ceramide accumulation activates PP2A and pJNK causing hypophosphorylation of AKT and hyperphosphorylation of IRS1 (Ser307), respectively, impairing insulin signaling pathway and eventually inhibiting the sarcolemma localization of GLUT4. These changes would result in reduced glucose uptake and insulin resistance. This study is the first to explain the phenomenon of ceramide accrual and impairment of insulin signaling pathway in aging muscle through a miR-34a based mechanism. In conclusion, our results suggest that Mstn and miR-34a antagonism can help ameliorate ceramide accumulation and loss of insulin sensitivity in aging skeletal muscle.  相似文献   

14.
15.
16.
17.
18.
The miR-17 family of microRNAs has recently been recognized for its importance during lung development. The transgenic overexpression of the entire miR-17–92 cluster in the lung epithelium led to elevated cellular proliferation and inhibition of differentiation, while targeted deletion of miR-17–92 and miR-106b–25 clusters showed embryonic or early post-natal lethality. Herein we demonstrate that miR-17 and its paralogs, miR-20a, and miR-106b, are highly expressed during the pseudoglandular stage and identify their critical functional role during embryonic lung development. Simultaneous downregulation of these three miRNAs in explants of isolated lung epithelium altered FGF10 induced budding morphogenesis, an effect that was rescued by synthetic miR-17. E-Cadherin levels were reduced, and its distribution was altered by miR-17, miR-20a and miR-106b downregulation, while conversely, beta-catenin activity was augmented, and expression of its downstream targets, including Bmp4 as well as Fgfr2b, increased. Finally, we identified Stat3 and Mapk14 as key direct targets of miR-17, miR-20a, and miR-106b and showed that simultaneous overexpression of Stat3 and Mapk14 mimics the alteration of E-Cadherin distribution observed after miR-17, miR-20a, and miR-106b downregulation. We conclude that the mir-17 family of miRNA modulates FGF10–FGFR2b downstream signaling by specifically targeting Stat3 and Mapk14, hence regulating E-Cadherin expression, which in turn modulates epithelial bud morphogenesis in response to FGF10 signaling.  相似文献   

19.
microRNAs (miRNAs) are small non-coding RNAs that regulate cellular processes by fine-tuning the levels of their target mRNAs. However, the regulatory elements determining cellular miRNA levels are not well studied. Previously, we had described an altered miRNA signature in the skeletal muscle of db/db mice. Here, we sought to explore the role of epigenetic mechanisms in altering these miRNAs. We show that histone deacetylase (HDAC) protein levels and activity are upregulated in the skeletal muscle of diabetic mice. In C2C12 cells, HDAC inhibition using suberoylanilide hydroxamic acid (SAHA) altered the levels of 24 miRNAs: 15 were downregulated and 9 were upregulated. miR-449a, an intronic miRNA localized within the Cdc20b gene, while being downregulated in the skeletal muscle of diabetic mice, was the most highly upregulated during HDAC inhibition. The host gene, Cdc20b, was also significantly upregulated during HDAC inhibition. Bioinformatics analyses identified a common promoter for both Cdc20b and miR-449a that harbors significant histone acetylation marks, suggesting the possibility of regulation by histone acetylation-deacetylation. These observations suggest an inverse correlation between miR-449a levels and HDAC activity, in both SAHA-treated skeletal muscle cells and db/db mice skeletal muscle. Further, in SAHA-treated C2C12 cells, we observed augmented occupancy of acetylated histones on the Cdc20b/miR-449a promoter, which possibly promotes their upregulation. In vivo injection of SAHA to db/db mice significantly restored skeletal muscle miR-449a levels. Our results provide insights into the potential regulatory role of epigenetic histone acetylation of the miR-449a promoter that may regulate its expression in the diabetic skeletal muscle.  相似文献   

20.
Tissue distribution of the cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase (cGPDH and mGPDH) activities in jerboa (Jaculus orientalis), a hibernator, shows the highest level of enzyme activity in skeletal muscle and brown adipose tissue, respectively. The effect of hibernation on cGPDH indicates an increase of activity in all tissues examined. In contrast, hibernation decreases mGPDH activity in all tissues, except skeletal muscle. The effect of thyroid hormones on GPDH activity was tissue specific: in kidneys, cGPDH activity doubled in euthermic jerboas treated with T4. In contrast, 6-n-propyl-2-thiouracil treatment provokes an increase of enzyme activity in brown adipose tissue, liver and brain. T4 treatment leads to a 2.7-fold increase in liver mGPDH activity. 6-n-propyl-2-thiouracil treatment decreases mGPDH activity in the skeletal muscle whereas the opposite effect was observed in brain. Dexamethasone stimulates cGPDH in all tissues examined, except skeletal muscle and kidneys. In the case of mGPDH activity, this increase was observed only for brown adipose tissue and brain. Our results suggest that hibernation, thyroid hormones and dexamethasone probably play a role in the regulation of cGPDH and mGPDH activities in jerboa. Our findings confirm that these enzymes are involved in metabolic adaptation to thermal stress in Jaculus orientalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号