首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

A C-to-T single nucleotide polymorphism (SNP) located at position 1858 of human protein tyrosine phosphatase, non-receptor type 22 (PTPN22) complementary DNA (cDNA) is associated with an increased risk of systemic lupus erythematosus (SLE). How the overall activity of PTPN22 is regulated and how the expression of PTPN22 differs between healthy individuals and patients with lupus are poorly understood. Our objectives were to identify novel alternatively spliced forms of PTPN22 and to examine the expression of PTPN22 isoforms in healthy donors and patients with lupus.

Methods

Various human PTPN22 isoforms were identified from the GenBank database or amplified directly from human T cells. The expression of these isoforms in primary T cells and macrophages was examined with real-time polymerase chain reaction. The function of the isoforms was determined with luciferase assays. Blood samples were collected from 49 subjects with SLE and 15 healthy controls. Correlation between the level of PTPN22 isoforms in peripheral blood and clinical features of SLE was examined with statistical analyses.

Results

Human PTPN22 was expressed in several isoforms, which differed in their level of expression and subcellular localization. All isoforms except one were functionally interchangeable in regulating NFAT activity. SLE patients expressed higher levels of PTPN22 than healthy individuals and the levels of PTPN22 were negatively correlated with the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SLICC-DI).

Conclusions

The overall activity of PTPN22 is determined by the functional balance among all isoforms. The levels of PTPN22 isoforms in peripheral blood could represent a useful biomarker of SLE.  相似文献   

2.
3.
4.
In inflamed tissues, the reciprocal interaction between Natural Killer (NK) cells and Dendritic Cells (DC) results in a potent activating cross talk that leads to DC maturation and NK cell activation with acquisition of NK-mediated cytotoxicity against immature DC (iDC). We focused our studies on NK-mediated killing of monocyte-derived iDC and we provided evidence that NK cells that express CD94/NKG2A but not killer Ig-like receptors (KIR) are able to kill autologous iDC. Indeed HLA-E (i.e. the cellular ligand of CD94/NKG2A) is sharply reduced in iDC, whereas it is partially recovered in mDC. The latter are lysed only by a small fraction of NK clones characterized by low levels of CD94/NKG2A expression. Another NK receptor, whose surface density is crucial for the ability to kill iDC, is represented by NKp30, a member of the NCR (Natural Cytotoxicity Receptor) family. We showed that transforming growth factor beta1 (TGFbeta1) treatment results in specific downregulation of NKp30 expression. This effect profoundly inhibits the NK-mediated killing of DC suggesting a possible mechanism by which TGFbeta1-producing DC may acquire resistance to the NK-mediated attack.  相似文献   

5.
 Our previous data suggested that chromatin fragments released from dead cells into the extracellular medium could be involved in the impairment of natural-killer (NK)-mediated cytotoxicity reported in cancer patients. In the present study, an inhibition of the NK-mediated lysis was obtained in vitro by nucleosome addition to different tumor target cells, independently of their sensitivity to NK-mediated lysis. We observed a rapid endocytosis and degradation of nucleosomes by K562 tumor target cells and (although to a much lesser extent) a binding to a subpopulation of lymphocytes. Nucleosomes impaired neither the conjugation step nor the expression of adhesion molecules at the effector (CD11a, CD18, CD2) or target (CD54, CD58) cell surface. On the contrary, flow-cytometry analysis of the conjugation suggested that nucleosomes might stabilize the conjugates. Investigations of the killing process showed that nucleosomes decreased the NK cytotoxic potential without modifying Ca2+-dependent lethal-hit-delivery kinetics. The cytotoxic potential was not restored by increasing the available magnesium and calcium concentrations in the extracellular medium. Taken together, the results suggest that the inhibition of NK-mediated lysis by nucleosomes may result from alterations of the NK mechanism at the postconjugation level and after lethal-hit delivery. Hence, the inhibition could involve a delay in the recycling of effector cells, or a resistance of tumor target cells to NK cells. Received: 7 October 1996 / Accepted: 12 November 1996  相似文献   

6.
The non-receptor tyrosine phosphatase PTPN22 has a vital function in inhibiting antigen-receptor signaling in T cells, while polymorphisms in the PTPN22 gene are important risk alleles in human autoimmune diseases. We recently reported that a key physiological function of PTPN22 was to prevent naïve T cell activation and effector cell responses in response to low affinity antigens. PTPN22 also has a more general role in limiting T cell receptor-induced proliferation. Here we present new data emphasizing this dual function for PTPN22 in T cells. Furthermore, we show that T cell activation modulates the expression of PTPN22 and additional inhibitory phosphatases. We discuss the implication of these findings for our understanding of the roles of PTPN22 in regulating T cell responses and in autoimmunity.  相似文献   

7.
8.
The crucial issue for defining successful natural killer (NK)-based anticancer therapy is the ability of tumor cells to activate resistance mechanisms leading to escape from NK-mediated killing. It is now well established that such mechanisms are likely evolved under hypoxia in the tumor microenvironment. Here, we show that hypoxia-induced autophagy impairs breast cancer cell susceptibility to NK-mediated lysis and that this impairment is reverted by targeting autophagy. We provide evidence that activation of autophagy in hypoxic cells is involved in selective degradation of the pro-apoptotic NK-derived serine protease GZMB/granzyme B, thereby blocking NK-mediated target cell apoptosis. Our in vivo data validate the concept that targeting autophagy in cancer cells promotes tumor regression by facilitating their elimination by NK cells. This study provides a cutting-edge advance in our understanding of how hypoxia-induced autophagy impairs NK-mediated lysis and might pave the way for formulating more effective NK-based antitumor therapy by combining autophagy inhibitors.  相似文献   

9.
The COX-2 product prostaglandin E2 (PGE2) contributes to the high metastatic capacity of breast tumors. Our published data indicate that inhibiting either PGE2 production or PGE2-mediated signaling through the PGE2 receptor EP4 reduces metastasis by a mechanism that requires natural killer (NK) cells. It is known that NK cell function is compromised by PGE2, but very little is known about the mechanism by which PGE2 affects NK effector activity. We now report the direct effects of PGE2 on the NK cell. Endogenous murine splenic NK cells express all four PGE2 receptors (EP1-4). We examined the role of EP receptors in three NK cell functions: migration, cytotoxicity, and cytokine release. Like PGE2, the EP4 agonist PGE1-OH blocked NK cell migration to FBS and to four chemokines (ITAC, MIP-1α, SDF-1α, and CCL21). The EP2 agonist, Butaprost, inhibited migration to specific chemokines but not in response to FBS. In contrast to the inhibitory actions of PGE2, the EP1/EP3 agonist Sulprostone increased migration. Unlike the opposing effects of EP4 vs. EP1/EP3 on migration, agonists of each EP receptor were uniformly inhibiting to NK-mediated cytotoxicity. The EP4 agonist, PGE1-OH, inhibited IFNγ production from NK cells. Agonists for EP1, EP2, and EP3 were not as effective at inhibiting IFNγ. Agonists of EP1, EP2, and EP4 all inhibited TNFα; EP4 agonists were the most potent. Thus, the EP4 receptor consistently contributed to loss of function. These results, taken together, support a mechanism whereby inhibiting PGE2 production or preventing signaling through the EP4 receptor may prevent suppression of NK functions that are critical to the control of breast cancer metastasis.  相似文献   

10.
Cellulases are important in the hydrolysis of lignocellulosic materials and thereby contribute to biomass conversion into fuels and chemicals. A cellulase-producing bacterium was isolated from decayed plant leaf litter in soil of a botanical garden. Based on morphological, biochemical and 16S rRNA gene sequencing, it was identified as Enterobacter cloacae IP8, with gene bank accession number NR118568.1. The bacterial cellulase was purified in a three-step procedure using lyophilization, ion exchange chromatography (QAE Sephadex A-50) and gel filtration (Biogel P-100). Two isoforms of the enzyme were purified 1.21 and 1.23 folds, respectively, with yields of 30 and 29% for isoforms A and B, respectively. Apparent molecular weights of 36.61?±?1.40 and 14.1?±?0.10?kDa were obtained for isoforms A and B, respectively, using gel filtration chromatography. Kinetic parameters Km and Vmax were 0.13?±?0.04?mg/ml and 3.84?±?0.05?U/ml/min, respectively, for isoform A and 0.58?±?0.06?mg/ml and 13.8?±?0.10?U/ml/min, respectively, for isoform B. Optimum pH (7.0) and temperature (60?°C) of cellulase activity were determined for both isoforms A and B. Na+ and Ca2+ enhanced the activities of both isoforms. Mg2+ inhibited the enzyme activity at concentrations 4–15?mM but, while it stimulated the activity of isoform A at concentrations 15–200?mM, it inhibited that of isoform B at same concentration range. The strong inhibition of the enzyme by ethylenediaminetetraacetic acid (EDTA) confirmed the enzyme as a metalloenzyme. These results reveal the purified cellulase from E. cloacae IP8 as a thermostable, acidic to neutral metalloenzyme, suggesting that it has good potential for biotechnological applications.  相似文献   

11.
It is currently believed that natural killer (NK) cells kill bound target cells by exocytosis of cytotoxic granules via a calcium-dependent process. After confirming that NK-mediated killing was indeed dependent upon extracellular calcium, we investigated the production of inositol-phospholipid-derived second messengers in a rat NK cell line, RNK, upon exposure to susceptible target cells. These messengers, inositol trisphosphate (IP3) and diacylglycerol (DAG), are associated with calcium-dependent secretory processes in a number of cell types. When RNK cells were exposed to susceptible YAC-1 tumor targets significant amounts of both IP3 and DAG were produced. The levels of the membrane phospholipid parent molecules of these second messengers declined in similarly stimulated RNK cells over a comparable time period. Using three different target cell lines, it was found that the levels of DAG that RNK produced in response to the different targets followed the same rank order as their susceptibility to RNK-mediated lysis. These data suggest that IP3 and DAG are produced in NK cells in response to tumor target cells, and these second messengers may have a functional role in NK-mediated killing.  相似文献   

12.
A new crotoxin B isoform PLA2 (F6a), from Crotalus durissus collilineatus was purified from by one step reverse phase HPLC chromatography using μ-Bondapack C-18 column analytic. The new crotoxin B isoform PLA2 (F6a), complex crotoxin, the catalytic subunit crotoxin B isoform PLA2 (F6a) and two crotapotin isoforms (F3 and F4), were isolated from the venom of Crotalus durissus collilineatus. The crotapotins isoforms F3 and F4 had similar chemical properties, the two proteins different in their ability to inhibit of isoforms of PLA2 (F6 and F6a). The molecular masses estimated by MALDI-TOF mass spectrometry were: crotoxin B: 14,943.14 Da, crotapotin F3: 8,693.24 Da, and crotapotin F4: 9 314.56 Da. The new crotoxin B isoform PLA2 (F6a) contained 122 amino acid residues and a pI of 8.58. Its amino acid sequence presents high identity with those of other PLA2s, particularly in the calcium binding loop and active site helix 3. It also presents similarities in the C-terminal region with other myotoxic PLA2s. The new crotoxin B isoform PLA2 (F6a) contained 122 amino acid residues, with a primary structure of HLLQFNKMIK FETRRNAIPP YAFYGCYCGW GGRGRPKDAT DRCCFVHDCC YGKLAKCNTK WDFYRYSLKS GYITCGKGTW CEEQICECDR VAAECLRRSL STYRYGYMIY PDSRCRGPSE TC. A neuromuscular blocking activity was induced by crotoxin and new crotoxin B isoform PLA2 (F6a) in the isolated mouse phrenic nerve diaphragm and the biventer cervicis chick nerve-muscle preparation. Whole crotoxin was devoid of cytolytic activity upon myoblasts and myotubes in vitro, whereas new crotoxin B isoform PLA2 (F6a) was clearly cytotoxic to these cells.  相似文献   

13.
msk, myocardial SNF1-like kinase, was originally isolated in a screen for kinases expressed during early cardiogenesis in the mouse. msk maps to the proximal end of mouse chromosome 17 in a region that is syntenic with human chromosome 21q22.3, where the gene for SNF1LK, a predicted protein that shares 80% identity at the amino acid level with Msk, is located. Accordingly, msk has been redesignated snf1lk. Interestingly, the region encompassing the SNF1LK locus has been implicated in congenital heart defects often observed in patients with Down syndrome. snf1lk is also expressed in skeletal muscle progenitor cells of the somite beginning at 9.5 dpc. These data suggest a more general role for snf1lk in the earliest stages of muscle growth and/or differentiation. Consistent with a role in cell cycling, we observe that Chinese hamster ovary cells that express a tetracycline-inducible SNF1LK kinase domain do not divide, but undergo additional rounds of replication to yield 8N and 16N cells. These data suggest a possible function for SNF1LK in G2/M regulation. We show data that indicate that SNF1LK does not share functional homology with other SNF1-related kinases, but represents a new subclass with novel molecular activities.  相似文献   

14.
Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them (“editing process”) at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DCHIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DCHIV. The escape of DCHIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DCHIV cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DCHIV. Finally, we demonstrate that restoration of DCHIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific siRNA, or by inhibiting HMGB1 with blocking antibodies or glycyrrhizin, arguing for a key role of HMGB1 in TRAIL resistance and DCHIV survival. These findings provide evidence for a new strategy developed by HIV to escape immune attack, they challenge the question of the involvement of HMGB1 in the establishment of viral reservoirs in DCs, and they identify potential therapeutic targets to eliminate infected DCs.  相似文献   

15.
PTPN4 is a widely expressed non-receptor protein tyrosine phosphatase. Although its overexpression inhibits cell growth, the proteins with which it interacts to regulate cell growth are unknown. In this study, we identified CrkI as a PTPN4-interacting protein using a yeast two-hybrid, and confirmed this interaction using in vitro GST pull-down and co-immunoprecipitation and co-localization assays. We further determined the interactional regions as the SH3 domain of CrkI and the proline-rich region between amino acids 462 and 468 of PTPN4. Notably, overexpression of PTPN4 inhibits CrkI-mediated proliferation and wound healing of HEK293T cells, while knockdown of PTPN4 by siRNA in Hep3B cells enhances CrkI-mediated cell growth and motility. Moreover, our data show that ectopic expression of PTPN4 reduces the phosphorylation level of CrkI in HEK293T cells. These findings suggest that PTPN4 negatively regulates cell proliferation and motility through dephosphorylation of CrkI.  相似文献   

16.
17.
18.

Background

Variations within the gene locus encoding protein tyrosine phosphatase non-receptor type 22 (PTPN22) are associated with the risk to develop inflammatory bowel disease (IBD). PTPN22 is involved in the regulation of T- and B-cell receptor signaling, but although it is highly expressed in innate immune cells, its function in other signaling pathways is less clear. Here, we study whether loss of PTPN22 controls muramyl-dipeptide (MDP)-induced signaling and effects in immune cells.

Material & Methods

Stable knockdown of PTPN22 was induced in THP-1 cells by shRNA transduction prior to stimulation with the NOD2 ligand MDP. Cells were analyzed for signaling protein activation and mRNA expression by Western blot and quantitative PCR; cytokine secretion was assessed by ELISA, autophagosome induction by Western blot and immunofluorescence staining. Bone marrow derived dendritic cells (BMDC) were obtained from PTPN22 knockout mice or wild-type animals.

Results

MDP-treatment induced PTPN22 expression and activity in human and mouse cells. Knockdown of PTPN22 enhanced MDP-induced activation of mitogen-activated protein kinase (MAPK)-isoforms p38 and c-Jun N-terminal kinase as well as canonical NF-κB signaling molecules in THP-1 cells and BMDC derived from PTPN22 knockout mice. Loss of PTPN22 enhanced mRNA levels and secretion of interleukin (IL)-6, IL-8 and TNF in THP-1 cells and PTPN22 knockout BMDC. Additionally, loss of PTPN22 resulted in increased, MDP-mediated autophagy in human and mouse cells.

Conclusions

Our data demonstrate that PTPN22 controls NOD2 signaling, and loss of PTPN22 renders monocytes more reactive towards bacterial products, what might explain the association of PTPN22 variants with IBD pathogenesis.  相似文献   

19.
Objectives: Aqueous Viscum album L. extracts are widely used for anti‐cancer therapies. Due to their low solubility, triterpenes (which are known to act on cancers), do not occur in aqueous extracts in significant amounts. Using cyclodextrins, we have found it possible to solubilize mistletoe triterpene acids and to determine their effects on acute lymphoblastic leukaemia (ALL) in vitro and in vivo. Materials and methods: A C.B‐17/SCID model of pre‐B ALL (NALM‐6) was used to test efficacy and mechanisms of treatment with lectin‐ and triterpene acid containing preparations in vivo. Cytotoxicity of increasing concentrations of V. album L. preparations was assessed in vitro. Apoptosis was determined using mitochondrial membrane potential measurements, annexin V/PI, western blot analyses and caspase inhibitor assays. Results: Solubilized triterpene acid‐ or lectin‐containing V. album L. extracts inhibited cell proliferation and demonstrated cytotoxic properties in vitro. Annexin V/PI and mitochondrial membrane potential assays indicated that dose‐dependent induction of apoptosis was the main mechanism. Combination (viscumTT) of lectin‐ (viscum) and triterpene‐containing (TT) extracts resulted in greatest induction of apoptosis. Furthermore, caspase activity demonstrated that these extracts were able to induce apoptosis through both caspase‐8 and ‐9 dependent pathways. In vivo experimentation showed that treatment of mice with viscumTT combination prolonged mean survival to 50.5 days compared to 39.3 days in the phosphate‐buffered saline group. Conclusion: Here for the first time, we have demonstrated that either solubilized triterpene acids or lectins and combinations thereof, induce dose‐dependent apoptosis in the ALL cell line NALM‐6 via caspase‐8 and ‐9 dependent pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号