首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prenatal maternal stress (PNMS) in animals and humans predicts obesity and metabolic dysfunction in the offspring. Epigenetic modification of gene function is considered one possible mechanism by which PNMS results in poor outcomes in offspring. Our goal was to determine the role of maternal objective exposure and subjective distress on child BMI and central adiposity at 13½ years of age, and to test the hypothesis that DNA methylation mediates the effect of PNMS on growth. Mothers were pregnant during the January 1998 Quebec ice storm. We assessed their objective exposure and subjective distress in June 1998. At age 13½ their children were weighed and measured (n = 66); a subsample provided blood samples for epigenetic studies (n = 31). Objective and subjective PNMS correlated with central adiposity (waist-to-height ratio); only objective PNMS predicted body mass index (BMI). Bootstrapping analyses showed that the methylation level of genes from established Type-1 and -2 diabetes mellitus pathways showed significant mediation of the effect of objective PNMS on both central adiposity and BMI. However, the negative mediating effects indicate that, although greater objective PNMS predicts greater BMI and adiposity, this effect is dampened by the effects of objective PNMS on DNA methylation, suggesting a protective role of the selected genes from Type-1 and -2 diabetes mellitus pathways. We provide data supporting that DNA methylation is a potential mechanism involved in the long-term adaptation and programming of the genome in response to early adverse environmental factors.  相似文献   

2.
Gene polymorphisms associated so far with body mass index (BMI) can explain only 1.18–1.45% of observed variation in BMI. Recent studies suggest that epigenetic modifications, especially DNA methylation, could contribute to explain part of the missing heritability, and two epigenetic genome-wide analysis studies (EWAS) have reported that Hypoxia Inducible Factor 3 Alpha Subunit (HIF3A) methylation was associated with BMI or BMI change. We therefore assessed whether the HIF3A methylation is associated with obesity and other obesity-related phenotypes in Chinese children. The subjects included 110 severe obese cases aged 7–17y and 110 normal-weight controls matched by age and gender for measurement of blood DNA methylation levels at the HIF3A gene locus using the Sequenom’s MassARRAY system. We observed significantly higher methylation levels in obese children than in controls at positions 46801642 and 46801699 in HIF3A gene (P<0.05), and found positive associations between methylation and alanine aminotransferase (ALT) levels adjusted by gender, age and BMI at the position 46801699 (r = 0.226, P = 0.007). These results suggest that HIF3A DNA methylation is associated with childhood obesity, and has a BMI-independent association with ALT. The results provide evidence for identifying epigenetic factors of elivated ALT and may be useful for risk assessment and personalized medicine of liver diseases such as non-alcoholic fatty liver disease (NAFLD).  相似文献   

3.
Physical activity and fitness play a significant role in prevention of overweight and obesity in children and adolescentes. Current understanding and evidence from epidemiologic studies provide useful insights to better understand how they relate to each other and how to develop future intervention strategies. This paper summarizes the most relevant information from cross-sectional and longitudinal studies on the relationships between physical activity, physical fitness, and overweight in early life. According to current scientific evidence: (i) High levels of physical activity during childhood and adolescence, particularly vigorous physical activity, are associated to lower total and central adiposity at this age and later in life; (ii) the level of physical fitness, especially aerobic fitness, is inversely related to current and future adiposity levels; (iii) overweight children and adolescents with a high fitness level have a healthier cardiovascular profile than their overweight, low fit peers and a similar profile to their normal weight, low fit peers. This suggests that high fitness levels may counteract the negative consequences attributed to body fat. These findings suggest that increasing physical fitness in overweight children and adolescentes may have many positive effects on health, including lower body fat levels.  相似文献   

4.
Gender differences in fat patterning in children living in Ankara   总被引:3,自引:0,他引:3  
Body composition is an excellent indicator for assessing obesity and nutritional status of both individuals and populations. Youth obesity has important health and social implications, because a large proportion of adult obesity has its origin in childhood. Numerous studies report that adverse levels of cardiovascular diseases risk factors are associated with adiposity in children. Concerning the Turkish population there is up to now only limited information with regard to adiposity in children. The aim of this study was therefore to determine the anthropometric and body composition characteristics and to investigate sex differences in fat patterning including fat distribution in a group of children living in Ankara. The present study evaluated the body composition of 332 boys and 269 girls aged between 8 and 11 years, attending public schools. It was carried out by a cross-sectional study and was focused on that anthropometric variables, which reflect body fat and fat-free mass. Anthropometric measurements including height, weight, triceps and subscapular skinfolds thickness were carried out on these children. The body mass index (BMI) was also calculated. The measurements were used to estimate the two-compartment model of body composition: fat-free mass (FFM) and body fat (BF) from skinfold equations. The mean fat percentage in boys is highest at 11 years (16.8%) and lowest at 10 years (15.6%). In girls these figures come to 18.2% and 17.1%, respectively. Girls of these age groups have a significantly larger percentage of body fat and skinfold thickness. At this young age there is therefore clear evidence of sexual dimorphism in fat patterning, as girls are showing a greater subcutaneous adiposity, which is mainly contributed by the triceps fat. The body fat (kg) increases in both sexes all over the investigated age groups. The Pearson correlation matrix showed a high significant relation between the anthropometric measurements (p < 0.01). The present study confirms the findings that sexual dimorphism of fat patterning in children is to be seen in the age of 8 - 11 years. It furthermore presents basic data of body composition, which could serve as reference data in other studies on the Turkish population.  相似文献   

5.
Background: Sobal and Stunkard's review (1989) of 34 studies from developed countries published after 1941, found inconsistent relationships between socioeconomic status (SES) and childhood adiposity. Inverse associations (36%), no associations (38%), and positive associations (26%) were found in similar proportions. In view of the trends in pediatric obesity, the relationship between SES and adiposity may have changed. Objective: To describe the cross‐sectional association between SES and adiposity in school‐age children from western developed countries in epidemiological studies since 1989. Methods and Procedures: PubMed database was searched to identify potentially relevant publications. Epidemiological studies from western developed countries presenting cross‐sectional data on the bivariate association between an SES indicator and objectively measured adiposity in childhood (5–18 years), carried out after 1989 were included. SES indicators included parental education, parental occupation, family income, composite SES, and neighborhood SES. Results: Forty‐five studies satisfied the review criteria. SES was inversely associated with adiposity in 19 studies (42%), there was no association in 12 studies (27%), and in 14 studies (31%) there was a mixture of no associations and inverse associations across subgroups. No positive SES‐adiposity associations were seen in unadjusted analyses. With parental education as the SES indicator, inverse associations with adiposity were found in 15 of 20 studies (75%). Discussion: Research carried out within the past 15 years finds that associations between SES and adiposity in children are predominately inverse, and positive associations have all but disappeared. Research is needed to understand the mechanisms through which parental social class influences childhood adiposity.  相似文献   

6.
Obesity is known to be strongly associated with cardiovascular disease and cancer, the leading causes of mortality worldwide, and develops owing to interactions between genes and the environment. DNA methylation can act as a downstream effector of environmental signals, and analysis of this process therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. Global DNA methylation of peripheral blood cells has recently been proposed as a potential biomarker for disease risk. Repetitive element DNA methylation has been shown to be associated with prominent obesity-related chronic diseases, but little is known about its relationship with weight status. In this study, we quantified the methylation of Alu elements in the peripheral blood DNA of 244 healthy women with a range of body mass indexes (BMIs) using pyrosequencing technology. Among the study participants, certain clinical laboratory parameters, including hemoglobin, serum glutamic oxaloacetic transaminase, serum glutamic-pyruvic transaminase, total cholesterol, and triglyceride levels were found to be strongly associated with BMI. Moreover, a U-shaped association between BMI and Alu methylation was observed, with the lowest methylation levels occurring at BMIs of between 23 and 30 kg/m2. However, there was no significant association between Alu methylation and age, smoking status, or alcohol consumption. Overall, we identified a differential influence of BMI on global DNA methylation in healthy Korean women, indicating that BMI-related changes in Alu methylation might play a complex role in the etiology and pathogenesis of obesity. Further studies are required to elucidate the mechanisms underlying this relationship.  相似文献   

7.
Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 – 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 – 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.  相似文献   

8.
The rising prevalence of childhood obesity is a key public health issue worldwide. Increased eating frequency (EF) is one aspect of diet that has been beneficially associated with obesity, although the mechanisms are unclear. The aims of the current study were to determine whether increased EF was associated with improved adiposity in children, and if this was due to differences in dietary and activity behaviors. Cross-sectional data from 1,700 children aged 9-10 year were analyzed to examine the associations between EF, as estimated from diet diaries, measures of adiposity, and activity measured by accelerometer. Analyses were stratified by obesity status using waist-to-height ratio to define obesity as it has been shown to be a good predictor of adverse health outcomes. Mean EF was 4.3 occasions/day and after adjustment for underreporting, energy intake (EI), and activity significant relative mean differences of -2.4% for body weight (P = 0.001), -1.0% for BMI (P = 0.020), -33% for BMI z-score (P = 0.014), and -0.6% for waist circumference (P = 0.031) per increase in eating occasion were found in healthy-weight but not centrally obese children. Differences between the extreme quartiles of EF were observed for total fat intake at breakfast (-18%, P < 0.001), fruit and vegetables from snacks (201% healthy-weight and 209% centrally obese children, P < 0.01), and for healthy-weight children, vigorous activity (4%, P = 0.003). Increased EF was favorably associated with adiposity, diet quality, and activity behaviors in healthy-weight but not centrally obese children. Future obesity interventions should consider the mediating role of diet quality and activity in the relationship between EF and adiposity in children.  相似文献   

9.

Background

Repetitive element DNA methylation is related to prominent obesity-related chronic diseases including cancer and cardiovascular disease; yet, little is known of its relation with weight status. We examined associations of LINE-1 DNA methylation with changes in adiposity and linear growth in a longitudinal study of school-age children from Bogotá, Colombia.

Methods

We quantified methylation of LINE-1 elements from peripheral leukocytes of 553 children aged 5–12 years at baseline using pyrosequencing technology. Anthropometric characteristics were measured periodically for a median of 30 months. We estimated mean change in three age-and sex-standardized indicators of adiposity: body mass index (BMI)-for-age Z-score, waist circumference Z-score, and subscapular-to-triceps skinfold thickness ratio Z-score according to quartiles of LINE-1 methylation using mixed effects regression models. We also examined associations with height-for-age Z-score.

Results

There were non-linear, inverse relations of LINE-1 methylation with BMI-for-age Z-score and the skinfold thickness ratio Z-score. After adjustment for baseline age and socioeconomic status, boys in the lowest quartile of LINE-1 methylation experienced annual gains in BMI-for-age Z-score and skinfold thickness ratio Z-score that were 0.06 Z/year (P = 0.04) and 0.07 Z/year (P = 0.03), respectively, higher than those in the upper three quartiles. The relation of LINE-1 methylation and annual change in waist circumference followed a decreasing monotonic trend across the four quartiles (P trend = 0.02). DNA methylation was not related to any of the adiposity indicators in girls. There were no associations between LINE-1 methylation and linear growth in either sex.

Conclusions

Lower LINE-1 DNA methylation is related to development of adiposity in boys.  相似文献   

10.
11.
Breastfeeding is suggested to be a potential obesity prevention strategy, but the evidence that breast-fed infants have a lower risk of later obesity is equivocal. Fourteen studies published between 2003 and 2006 that considered the relationship between breastfeeding and risk of childhood overweight and obesity were reviewed. Three studies reported a protective effect in children (i.e., increased duration of breastfeeding was associated with a lower risk of childhood overweight/obesity), 4 reported a partial protective effect (i.e., only evident in a subgroup), 6 reported no protective effect, and 1 reported a protective effect in children but not in adults. While there is some evidence that breastfeeding may help to prevent childhood obesity, it should not be viewed as the only preventative nutrition measure. In the U.S., rates of breastfeeding have risen while rates for childhood obesity have increased dramatically. This finding reinforces the view that many factors are involved in maintaining a healthy body weight.  相似文献   

12.
The dog is considered to be a useful biomedical model for human diseases and disorders, including obesity. One of the numerous genes associated with human polygenic obesity is MC4R, encoding the melanocortin 4 receptor. The aim of our study was to analyze polymorphisms and methylation of the canine MC4R in relation to adiposity. Altogether 270 dogs representing four breeds predisposed to obesity: Labrador Retriever (n?=?187), Golden Retriever (n?=?38), Beagle (n?=?28) and Cocker Spaniel (n?=?17), were studied. The dogs were classified into three groups: lean, overweight and obese, according to the 5-point Body Condition Score (BCS) scale. In the cohort of Labradors a complete phenotypic data (age, sex, neutering status, body weight and BCS) were collected for 127 dogs. The entire coding sequence as well as 5′ and 3′-flanking regions of the studied gene were sequenced and six polymorphic sites were reported. Genotype frequencies differed considerably between breeds and Labrador Retrievers appeared to be the less polymorphic. Moreover, distribution of some polymorphic variants differed significantly (P?<?0.05) between small cohorts with diverse BCS in Golden Retrievers (c.777T>C, c.868C>T and c.*33C>G) and Beagles (c.-435T>C and c.637G>T). On the contrary, in Labradors no association between the studied polymorphisms and BCS or body weight was observed. Methylation analysis, using bisulfite DNA conversion followed by Sanger sequencing, was carried out for 12 dogs with BCS?=?3 and 12 dogs with BCS?=?5. Two intragenic CpG islands, containing 19 cytosines, were analyzed and the methylation profile did not differ significantly between lean and obese animals. We conclude that an association of the MC4R gene polymorphism with dog obesity or body weight is unlikely, in spite of the fact that some associations were found in small cohorts of Beagles and Golden Retrievers. Also methylation level of this gene is not related with dog adiposity.  相似文献   

13.
Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle‐related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non‐coding RNAs are viable mechanistic candidates for a non‐genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health‐related effects in future generations.  相似文献   

14.
Birth weight has been shown to be associated with obesity and metabolic diseases in adulthood, however, the genetic contribution is still controversial. The objective of this analysis is to explore the genetic contribution to the relationship between birth weight and later risk for obesity and metabolic diseases in Hispanic children. Subjects were 1,030 Hispanic children in the Viva La Familia Study. Phenotypes included body size, body composition, blood pressure, fasting glucose, insulin, lipids, and liver enzymes. Birth weights were obtained from Texas birth certificates. Quantitative genetic analyses were conducted using SOLAR software. Birth weight was highly heritable, as were all other phenotypes. Phenotypically, birth weight was positively correlated to childhood body size parameters. Decomposition of these phenotypic correlations into genetic and environmental components revealed significant genetic correlations, ranging from 0.30 to 0.59. Negative genetic correlations were seen between birth weight and lipids. The genome scan of birth weight mapped to a region near marker D10S537 (LOD = 2.6). The bivariate genome-wide scan of birth weight and childhood weight or total cholesterol, improved the LOD score to 3.09 and 2.85, respectively. Chromosome 10q22 harbors genes influencing both birth weight and childhood body size and cardiovascular disease risk in Hispanic children.  相似文献   

15.
16.
《Epigenetics》2013,8(6):535-541
Pre-B cell acute lymphoblastic leukemia (ALL) is the most prevalent childhood malignancy and remains one of the highest causes of childhood mortality. Despite this, the mechanisms leading to disease remain poorly understood. We asked if recurrent aberrant DNA methylation plays a role in childhood ALL and have defined a genome-scale DNA methylation profile associated with the ETV6-RUNX1 subtype of pediatric ALL. Archival bone marrow smears from 19 children collected at diagnosis and remission were used to derive a disease specific DNA methylation profile. The gene signature was confirmed in an independent cohort of 86 patients. A further 163 patients were analyzed for DNA methylation of a three gene signature. We found that the DNA methylation signature at diagnosis was unique from remission. Fifteen loci were sufficient to discriminate leukemia from disease-free samples and purified CD34+ cells. DNA methylation of these loci was recurrent irrespective of cytogenetic subtype of pre-B cell ALL. We show that recurrent aberrant genomic methylation is a common feature of pre-B ALL, suggesting a shared pathway for disease development. By revealing new DNA methylation markers associated with disease, this study has identified putative targets for development of novel epigenetic-based therapies.  相似文献   

17.
《Epigenetics》2013,8(6):516-526
DNA methylation is a key epigenetic mechanism involved in the developmental regulation of gene expression. Alterations in DNA methylation are established contributors to inter-individual phenotypic variation and have been associated with disease susceptibility. The degree to which changes in loci-specific DNA methylation are under the influence of heritable and environmental factors is largely unknown. In this study, we quantitatively measured DNA methylation across the promoter regions of the dopamine receptor 4 gene (DRD4), the serotonin transporter gene (SLC6A4/SERT) and the X-linked monoamine oxidase A gene (MAOA) using DNA sampled at both ages 5 and 10 years in 46 MZ twin-pairs and 45 DZ twin-pairs (total n=182). Our data suggest that DNA methylation differences are apparent already in early childhood, even between genetically identical individuals, and that individual differences in methylation are not stable over time. Our longitudinal-developmental study suggests that environmental influences are important factors accounting for interindividual DNA methylation differences, and that these influences differ across the genome. The observation of dynamic changes in DNA methylation over time highlights the importance of longitudinal research designs for epigenetic research.  相似文献   

18.

Background

Hyperhomocysteinemia is regarded as a risk factor for cardiovascular diseases, diabetes and obesity. Manifestation of these chronic metabolic disorders starts in early life marked by increase in body mass index (BMI). We hypothesized that perturbations in homocysteine metabolism in early life could be a link between childhood obesity and adult metabolic disorders. Thus here we investigated association of common variants from homocysteine metabolism pathway genes with obesity in 3,168 urban Indian children.

Methodology/Principal Findings

We genotyped 90 common variants from 18 genes in 1,325 children comprising of 862 normal-weight (NW) and 463 over-weight/obese (OW/OB) children in stage 1. The top signal obtained was replicated in an independent sample set of 1843 children (1,399 NW and 444 OW/OB) in stage 2. Stage 1 association analysis revealed association between seven variants and childhood obesity at P<0.05, but association of only rs2796749 in AMD1 [OR = 1.41, P = 1.5×10-4] remained significant after multiple testing correction. Association of rs2796749 with childhood obesity was validated in stage 2 [OR = 1.28, P = 4.2×10-3] and meta-analysis [OR = 1.35, P = 1.9×10-6]. AMD1 variant rs2796749 was also associated with quantitative measures of adiposity and plasma leptin levels that was also replicated and corroborated in combined analysis.

Conclusions/Significance

Our study provides first evidence for the association of AMD1 variant with obesity and plasma leptin levels in children. Further studies to confirm this association, its functional significance and mechanism of action need to be undertaken.  相似文献   

19.
The majority of congenital heart defects (CHDs) are thought to result from the interaction between multiple genetic, epigenetic, environmental, and lifestyle factors. Epigenetic mechanisms are attractive targets in the study of complex diseases because they may be altered by environmental factors and dietary interventions. We conducted a population based, case-control study of genome-wide maternal DNA methylation to determine if alterations in gene-specific methylation were associated with CHDs. Using the Illumina Infinium Human Methylation27 BeadChip, we assessed maternal gene-specific methylation in over 27,000 CpG sites from DNA isolated from peripheral blood lymphocytes. Our study sample included 180 mothers with non-syndromic CHD-affected pregnancies (cases) and 187 mothers with unaffected pregnancies (controls). Using a multi-factorial statistical model, we observed differential methylation between cases and controls at multiple CpG sites, although no CpG site reached the most stringent level of genome-wide statistical significance. The majority of differentially methylated CpG sites were hypermethylated in cases and located within CpG islands. Gene Set Enrichment Analysis (GSEA) revealed that the genes of interest were enriched in multiple biological processes involved in fetal development. Associations with canonical pathways previously shown to be involved in fetal organogenesis were also observed. We present preliminary evidence that alterations in maternal DNA methylation may be associated with CHDs. Our results suggest that further studies involving maternal epigenetic patterns and CHDs are warranted. Multiple candidate processes and pathways for future study have been identified.  相似文献   

20.
2 型糖尿病(Type 2 diabetes mellitus, T2DM)是由于遗传与环境因素共同作用而引起葡萄糖代谢紊乱的疾病。DNA甲基化修饰的研究发现环境因素可以通过影响DNA甲基化修饰, 显著地增加T2DM的患病风险。目前, T2DM环境相关基因的DNA甲基化修饰研究已在人及动物的不同组织中取得进展。此外, T2DM相关基因的甲基化研究主要集中在糖代谢、能量代谢、炎症等。文章系统地综述了目前T2DM致病环境因素与DNA甲基化研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号