首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs with immense significance in numerous biological processes. When aberrantly expressed miRNAs have been shown to play a role in the pathogenesis of several disease states. Extensive research has explored miRNA involvement in the development and fate of immune cells and in both the innate and adaptive immune responses whereby strong evidence links miRNA expression to signalling pathways and receptors with critical roles in the inflammatory response such as NF-κB and the toll-like receptors, respectively. Recent studies have revealed that unique miRNA expression profiles exist in inflammatory lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and lung cancer. Evaluation of the global expression of miRNAs provides a unique opportunity to identify important target gene sets regulating susceptibility and response to infection and treatment, and control of inflammation in chronic airway disorders. Over 800 human miRNAs have been discovered to date, however the biological function of the majority remains to be uncovered. Understanding the role that miRNAs play in the modulation of gene expression leading to sustained chronic pulmonary inflammation is important for the development of new therapies which focus on prevention of disease progression rather than symptom relief. Here we discuss the current understanding of miRNA involvement in innate immunity, specifically in LPS/TLR4 signalling and in the progression of the chronic inflammatory lung diseases cystic fibrosis, COPD and asthma. miRNA in lung cancer and IPF are also reviewed.  相似文献   

2.
3.
The immune system is composed of different cell types localised throughout the organism to sense and respond to pathological situations while maintaining homeostasis under physiological conditions. Intercellular communication between immune cells is essential to coordinate an effective immune response and involves both cell contact dependent and independent processes that ensure the transfer of information between bystander and distant cells. There is a rapidly growing body of evidence on the pivotal role of extracellular vesicles (EVs) in cell communication and these structures are emerging as important mediators for immune modulation upon delivery of their molecular cargo. In the last decade, EVs have been shown to be efficient carriers of genetic information, including microRNAs (miRNAs), that can be transferred between cells and regulate gene expression and function on the recipient cell. Here, we review the current knowledge of intercellular functional transfer of EV‐delivered miRNAs and their putative role in immune regulation.  相似文献   

4.
昆虫miRNA研究进展   总被引:1,自引:0,他引:1  
微小RNA(microRNA,miRNA)广泛存在于不同的生物体内,是一类长度为19~24 nt的内源性单链非编码小RNA,主要通过其种子区域与靶基因的开放阅读框(open reading frame,ORF)和3'非翻译区(untranslated region,UTR)进行结合,进而在转录后水平调控基因表达,miR...  相似文献   

5.
The successful development and implementation of precision immuno-oncology therapies requires a deeper understanding of the immune architecture at a patient level. T-cell receptor (TCR) repertoire sequencing is a relatively new technology that enables monitoring of T-cells, a subset of immune cells that play a central role in modulating immune response. These immunologic relationships are complex and are governed by various distributional aspects of an individual patient's tumor profile. We propose Bayesian QUANTIle regression for hierarchical COvariates (QUANTICO) that allows simultaneous modeling of hierarchical relationships between multilevel covariates, conducts explicit variable selection, estimates quantile and patient-specific coefficient effects, to induce individualized inference. We show QUANTICO outperforms existing approaches in multiple simulation scenarios. We demonstrate the utility of QUANTICO to investigate the effect of TCR variables on immune response in a cohort of lung cancer patients. At population level, our analyses reveal the mechanistic role of T-cell proportion on the immune cell abundance, with tumor mutation burden as an important factor modulating this relationship. At a patient level, we find several outlier patients based on their quantile-specific coefficient functions, who have higher mutational rates and different smoking history.  相似文献   

6.
微小RNA(microRNA,miRNA)是一类长约22个核苷酸的RNA,在数量、序列、结构、表达和功能上具有多样性。目前,通过生物信息学手段和分子克隆方法,已发现了3518种miRNA,在控制细胞的生长发育、分化、凋亡等过程中发挥着十分重要的作用。最近研究发现疱疹病毒、多瘤病毒、逆转录病毒的某些病毒基因组也能够编码miRNA,这些miRNA在调控病毒基因自身表达以及病毒与宿主相互作用方面可能起重要的作用。某些病毒甚至能够利用宿主体内的miRNA调控其自身表达。找出病毒可能编码的miRNA,探索其对病毒感染、复制、表达的作用,有助于病毒分子生物学的研究,也会为研发防治病毒的新方法和新途径提供新的思路。  相似文献   

7.
微RNA(MicroRNA,miRNA)是一类在转录后水平调节基因表达的大约22 nt的非编 码内源单链RNA.已经表明,它们与许多重要的生理和病理过程相关,包括发育、分化、细胞 凋亡、脂肪代谢、病毒感染和癌症.越来越多的证据表明,miRNA参与了获得性免疫的调节. 有趣的是,不同于开关式的调节,miRNA表现出定量的基因调节,它们能精细调节细胞免疫 反应以响应外界刺激.深入理解miRNAs对获得性免疫的调节作用有助于调节宿主免疫应答和 保护感染组织间的平衡,鉴定免疫调节新靶标和开发基于miRNA的有效疗法.本文综述了miRN A包括病毒miRNA对获得性免疫的调节作用,特别是miRNA在调节免疫活性细胞、T细胞功 能和抗体产生中的作用.  相似文献   

8.
The transient receptor potential melastatin 8 (TRPM8) is an ion channel that has been widely studied as a cold-sensitive nociceptor. However, its importance in nonneuronal cells is mostly unexplored. Here, we describe the presence and functional significance of endogenous TRPM8, a nonselective Ca2+-channel in T cell functions. The major pool of TRPM8 resides at the T cell surface and its surface accumulation significantly increases in activated T cells. TRPM8 activation synergizes with T-cell receptor (TCR) stimulation to increase CD25, CD69 levels and enhances secretion of proinflammatory cytokine tumor necrosis factor. However, TRPM8 inhibition does not restrict TCR stimulation mediated activation of T cells, indicating that unlike the heat-sensitive TRPV1 and TRPV4 channels, the cold-sensitive TRPM8 channel may be dispensable during T-cell activation, at least in mice. In this study, we demonstrate that TRPM8 promotes TCR-induced intracellular calcium increase. TRPM8 activation is beneficial for T-cell activation and differentiation into effector cells. TRPM8 inhibition during the T-cell activation process may lead to altered phenotype and reduced proliferation, without affecting cell viability. These results collectively establish TRPM8 as a functional calcium channel whose activation may be utilized for mounting an effective immune response. The findings of this study will be relevant to the regulation and response of T cells during cell-mediated immunity. These results will likely further our understanding on the role of ion channels in T-cell activation.  相似文献   

9.
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an immune checkpoint molecule that is mainly expressed on activated T cells and regulatory T (Treg) cells that inhibits T-cell activation and regulates immune homeostasis. Due to the crucial functions of CTLA-4 in T-cell biology, CTLA-4-targeted immunotherapies have been developed for autoimmune disease as well as cancers. CTLA-4 is known to compete with CD28 to interact with B7, but some studies have revealed that its downstream signaling is independent of its ligand interaction. As a signaling domain of CTLA-4, the tyrosine motif plays a role in inhibiting T-cell activation. Recently, the lysine motif has been shown to be required for the function of Treg cells, emphasizing the importance of CTLA-4 signaling. In this review, we summarize the current understanding of CTLA-4 biology and molecular signaling events and discuss strategies to target CTLA-4 signaling for immune modulation and disease therapy.  相似文献   

10.
Public T-cell responses, in which T cells bearing identical T-cell receptors (TCRs) are observed to dominate the response to the same antigenic epitope in multiple individuals, have long been a focus of immune T-cell repertoire studies. However, the mechanism that enables the survival of a specific TCR from the diverse repertoire produced in the thymus through to its involvement in a public immune response remains unclear. In this Opinion article, we propose that the frequency of production of T cells bearing different TCRs during recombination has an important role in the sharing of TCRs in an immune response, with variable levels of 'convergent recombination' driving production frequencies.  相似文献   

11.
Heat shock proteins (HSPs) are a large family of molecular chaperones aberrantly expressed in cancer. The expression of HSPs in tumor cells has been shown to be implicated in the regulation of apoptosis, immune responses, angiogenesis and metastasis. Given that extracellular vesicles (EVs) can serve as potential source for the discovery of clinically useful biomarkers and therapeutic targets, it is of particular interest to study proteomic profiling of HSPs in EVs derived from various biological fluids of cancer patients. Furthermore, a divergent expression of circulating microRNAs (miRNAs) in patient samples has opened new opportunities in exploiting miRNAs as diagnostic tools. Herein, we address the current literature on the expression of extracellular HSPs with particular interest in HSPs in EVs derived from various biological fluids of cancer patients and different types of immune cells as promising targets for identification of clinical biomarkers of cancer. We also discuss the emerging role of miRNAs in HSP regulation for the discovery of blood-based biomarkers of cancer. We outline the importance of understanding relationships between various HSP networks and co-chaperones and propose the model for identification of HSP signatures in cancer. Elucidating the role of HSPs in EVs from the proteomic and miRNAs perspectives may provide new opportunities for the discovery of novel biomarkers of cancer.  相似文献   

12.
The diverse functions of microRNAs in animal development and disease   总被引:16,自引:0,他引:16  
MicroRNAs (miRNAs) control gene expression by translational inhibition and destabilization of mRNAs. While hundreds of miRNAs have been found, only a few have been studied in detail. miRNAs have been implicated in tissue morphogenesis, cellular processes like apoptosis, and major signaling pathways. Emerging evidence suggests a direct link between miRNAs and disease, and miRNA expression signatures are associated with various types of cancer. In addition, the gain and loss of miRNA target sites appears to be causal to some genetic disorders. Here, we discuss the current literature on the role of miRNAs in animal development and disease.  相似文献   

13.
Immune cell-type specific miRNA expression patterns have been described but the detailed role of single miRNAs in the function of T-cells remains largely unknown. We investigated the role of miR-21 in the function of primary human CD4+ T-cells. MiR-21 is substantially expressed in T-cells with a memory phenotype, and is robustly upregulated upon αCD3/CD28 activation of both naive and memory T-cells. By inhibiting the endogenous miR-21 function in activated naive and memory T-cells, we showed that miR-21 regulates fundamentally different aspects of T-cell biology, depending on the differentiation status of the T-cell. Stable inhibition of miR-21 function in activated memory T-cells led to growth disadvantage and apoptosis, indicating that the survival of memory T-cells depends on miR-21 function. In contrast, stable inhibition of miR-21 function in activated naive T-cells did not result in growth disadvantage, but led to a significant induction of CCR7 protein expression. Direct interaction between CCR7 and miR-21 was confirmed in a dual luciferase reporter assay. Our data provide evidence for a dual role of miR-21 in CD4+ T cells; Regulation of T-cell survival is confined to activated memory T-cells, while modulation of potential homing properties, through downregulation of CCR7 protein expression, is observed in activated naive T-cells.  相似文献   

14.
Dendritic cells (DCs) link innate immune sensing of the environment to the initiation of adaptive immune responses. Given their supreme capacity to interact with and present antigen to T cells, DCs have been proposed as key mediators of immunological tolerance in the steady state. However, recent evidence suggests that the role of DCs in central and peripheral T-cell tolerance is neither obligate nor dominant. Instead, DCs appear to regulate multiple aspects of T-cell physiology including tonic antigen receptor signaling, priming of effector T-cell response, and the maintenance of regulatory T cells. These diverse contributions of DCs may reflect the significant heterogeneity and "division of labor" observed between and within distinct DC subsets. The emerging complex role of different DC subsets should form the conceptual basis of DC-based therapeutic approaches toward induction of tolerance or immunization.  相似文献   

15.
16.
M cells in the follicle-associated epithelium (FAE) of Peyer’s patches (PPs) serve as a main portal for external antigens and function as a sentinel in mucosal immune responses. The scarcity of these cells has hampered identification of M cell-specific molecules. Recent efforts have begun to provide insight into antigen transcytosis and differentiation of M cells; however, the molecular mechanisms underlying these processes are not fully elucidated. Small non-coding RNAs including microRNA (miRNA) have been reported to regulate gene expression and control various biological processes such as cellular differentiation and function. To evaluate the expression of miRNAs in FAE, including M cells, we previously performed microarray analysis comparing intestinal villous epithelium (VE) and PP FAE. Here we confirmed FAE specific miRNA expression levels by quantitative PCR. To gain insight into miRNA function, we generated mice with intestinal epithelial cell-specific deletion of Dicer1 (DicerΔIEC) and analyzed intestinal phenotypes, including M-cell differentiation, morphology and function. DicerΔIEC mice had a marked decrease in M cells compared to control floxed Dicer mice, suggesting an essential role of miRNAs in maturation of these cells. Furthermore, transmission electron microscopic analysis revealed that depletion of miRNA caused the loss of endosomal structures in M cells. In addition, antigen uptake by M cells was impaired in DicerΔIEC mice. These results suggest that miRNAs play a significant role in M cell differentiation and help secure mucosal immune homeostasis.  相似文献   

17.
免疫突触(immunological synapse,IS)是抗原提呈细胞与T细胞免疫识别时,多种分子参与、分阶段不断变化的过程,涉及黏附分子、细胞因子、信号传导分子、细胞骨架蛋白等多分子的聚集或离散.其形成不仅促进T细胞和抗原提呈细胞的稳定接触,而且激活T细胞信号传导途径,促进T细胞的活化和增殖.对IS的研究可以从分子水平解释免疫激活、免疫耐受、病原微生物感染与免疫细胞相互作用的机制,为进一步揭示疾病发生的分子机制,寻求疾病防治的靶向分子提供新的思路.近年来,光学成像的发展为可视化研究IS形成与T细胞活化的关系提供了有力帮助,为研究生理病理状态下的免疫应答提供了有力工具.  相似文献   

18.
During the acute phase of infection with influenza A virus, the degree of lymphopenia correlates with severity of disease. Factors that contribute to T-cell activation during influenza virus infection may contribute to this observation. Since the immune response is initiated when dendritic cells (DC) interact with T cells, we have established an in vitro system to examine the effects of influenza virus infection on DC function. Our results show that allogeneic T-cell proliferation was dependent on the dose of A/PR/8/34 used to infect DC, with enhanced responses at low, but not high, multiplicities of infection. The lack of enhancement at high virus doses was not primarily due to the increased rate of DC apoptosis, but required viral replication and neuraminidase (NA) activity. Clusters that formed between DC or between DC and T cells were also dependent on the viral dose. This change in cellular interaction may oppose T-cell proliferation in response to DC infected with high doses of PR8, since the increased contact between DC resulted in the exclusion of T cells. The enhanced alloreactive T-cell response was restored by neutralization of transforming growth factor beta1 (TGF-beta1). It is likely that NA present on viral particles released from DC infected with high doses of PR8 activates TGF-beta1. Future studies will determine the mechanism by which TGF-beta1 modifies the in vitro T-cell response and address the contribution of this cytokine to the lymphopenia observed in severe disease.  相似文献   

19.
Hofstetter HH  Lühder F  Toyka KV  Gold R 《Cytokine》2006,34(3-4):184-197
IL-17 is a potent proinflammatory cytokine produced by activated memory T cells. Recent studies in both human autoimmune diseases and in their animal models have indicated that IL-17 rather than IFN-gamma might be the essential T-cell effector cytokine in the T-cell mediated autoimmune process. Since the thymus has a central role in maintaining T-cell self-tolerance and disturbance of thymic self-tolerance is implied in various autoimmune diseases, we here investigated the capability of murine thymocytes to produce IL-17. Our results indicate that thymocytes are a potent source of IL-17 in response to CD3 stimulation and various microbial immune stimuli and thereby show different patterns in the expression of the proinflammatory cytokines IFN-gamma and IL-17. In addition, strong differences between thymocytes and splenocytes were detected. Altered IL-17 production by thymocytes upon contact with foreign pathogens might be a key regulator in the education of adaptive immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号