首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.  相似文献   

2.
Vascular endothelial growth factor (VEGF)-dependent signals are central to many endothelial cell (EC) functions, including survival and regulation of vascular tone. Akt and endothelial nitric oxide synthase (eNOS) activity are implicated to mediate these effects. Dysregulated signaling is characteristic of endothelial dysfunction that sensitizes the glomerular microvasculature to injury. Signaling intermediates that couple VEGF stimulation to eNOS activity remain unclear; hence, we examined the PI3 kinase isoforms implicated to regulate these enzymes. Using a combination of small molecule inhibitors and RNAi to study responses to VEGF in glomerular EC, we observed that the PI3 kinase p110α catalytic isoform is coupled to VEGFR2 and regulates the bulk of Akt activity. Coimmunoprecipitation experiments support a physical association of p110α with VEGFR2. Downstream, Akt-mediated FOXO1 phosphorylation in EC is regulated by p110α. The p110δ isoform contributes a minor amount of VEGF-stimulated Akt activation. However, we observe no effect of p110α or p110δ to regulate VEGF-stimulated eNOS activation via Akt-mediated phosphorylation on eNOS Ser1177, or NO-mediated vasodilation of the afferent arteriole ex vivo. VEGFR2-stimulated eNOS activation and NO production are inhibited by Compound C, an inhibitor of AMP-stimulated kinase, independent of PI3 kinase signaling. PI3 kinase-α/δ-mediated signaling downstream of VEGFR2 activation regulates Akt-dependent survival signals, but our data suggest it is not required to activate eNOS or to elicit NO production in glomerular EC.  相似文献   

3.
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.  相似文献   

4.
Fluid shear stress generated by blood flow modulates endothelial cell function via specific intracellular signaling events. We showed previously that flow activated the phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) via Src kinase-dependent transactivation of vascular endothelial growth factor receptor 2 (VEGFR2). The scaffold protein Gab1 plays an important role in receptor tyrosine kinase-mediated signal transduction. We found here that laminar flow (shear stress = 12 dynes/cm2) rapidly stimulated Gab1 tyrosine phosphorylation in both bovine aortic endothelial cells and human umbilical vein endothelial cells, which correlated with activation of Akt and eNOS. Gab1 phosphorylation as well as activation of Akt and eNOS by flow was inhibited by the Src kinase inhibitor PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and VEGFR2 kinase inhibitors SU1498 and VTI, suggesting that flow-mediated Gab1 phosphorylation is Src kinase-dependent and VEGFR2-dependent. Tyrosine phosphorylation of Gab1 by flow was functionally important, because flow stimulated the association of Gab1 with the PI3K subunit p85 in a time-dependent manner. Furthermore, transfection of a Gab1 mutant lacking p85 binding sites inhibited flow-induced activation of Akt and eNOS. Finally, knockdown of endogenous Gab1 by small interference RNA abrogated flow activation of Akt and eNOS. These data demonstrate a critical role of Gab1 in flow-stimulated PI3K/Akt/eNOS signal pathway in endothelial cells.  相似文献   

5.
Polychlorinated biphenyls (PCBs) may contribute to the pathology of atherosclerosis by activating inflammatory responses in vascular endothelial cells. Endothelial nitric oxide synthase (eNOS) is colocalized with caveolae and is a critical regulator of vascular homeostasis. PCBs may be proatherogenic by causing dysfunctional eNOS signaling. The objective of this study was to investigate the role of caveolin-1 in PCB-induced endothelial dysfunction with a focus on mechanisms associated with eNOS signaling. Cells derived from an immortalized human vascular endothelial cell line were treated with PCB77 to study nitrotyrosine formation through eNOS signaling. Phosphorylation studies of eNOS, caveolin-1, and kinases, such as Src, phosphatidylinositol 3-kinase (PI3K), and Akt, were conducted in cells containing either functional or small-interfering RNA-silenced caveolin-1 protein. We also investigated caveolin-1-regulated mechanisms associated with PCB-induced markers of peroxynitrite formation and DNA binding of NF-kappaB. Cellular exposure to PCB77 increased eNOS phosphorylation and nitric oxide production, as well as peroxynitrite levels. A subsequent PCB-induced increase in NF-kappaB DNA binding may have implications in oxidative stress-mediated inflammatory mechanisms. The activation of eNOS by PCB77 treatment was blocked by inhibitors of the Src/PI3K/Akt pathway. PCB77 also increased phosphorylation of caveolin-1, indicating caveolae-dependent endocytosis. Caveolin-1 silencing abolished both the PCB-stimulated Akt and eNOS phosphorylation, suggesting a regulatory role of caveolae in PCB-induced eNOS signaling. These findings suggest that PCB77 induces eNOS phosphorylation in endothelial cells through a Src/PI3K/Akt-dependent mechanism, events regulated by functional caveolin-1. Our data provide evidence that caveolae may play a critical role in regulating vascular endothelial cell activation and toxicity induced by persistent environmental pollutants such as coplanar PCBs.  相似文献   

6.
Loss of fluid shear stress (ischemia) to the lung endothelium causes endothelial plasma membrane depolarization via ATP-sensitive K(+) (K(ATP)) channel closure, initiating a signaling cascade that leads to NADPH oxidase (NOX2) activation and ROS production. Since wortmannin treatment significantly reduces ROS production with ischemia, we investigated the role of phosphoinositide 3-kinase (PI3K) in shear-associated signaling. Pulmonary microvascular endothelial cells in perfused lungs subjected to abrupt stop of flow showed membrane depolarization and ROS generation. Stop of flow in flow-adapted mouse pulmonary microvascular endothelial cells in vitro resulted in the activation of PI3K and Akt as well as ROS generation. ROS generation in the lungs in situ was almost abolished by the PI3K inhibitor wortmannin and the PKC inhibitor H7. The combination of the two (wortmannin and H7) did not have a greater effect. Activation of NOX2 was greatly diminished by wortmannin, knockout of Akt1, or dominant negative PI3K, whereas membrane depolarization was unaffected. Ischemia-induced Akt activation (phosphorylation) was not observed with K(ATP) channel-null cells, which showed minimal changes in membrane potential with ischemia. Activation of Akt was similar to wild-type cells in NOX2-null cells, which do not generate ROS with ischemia. Cromakalim, a K(ATP) channel agonist, prevented both membrane depolarization and Akt phosphorylation with ischemia. Thus, Akt1 phosphorylation follows cell membrane depolarization and precedes the activation of NOX2. These results indicate that PI3K/Akt and PKC serve as mediators between endothelial cell membrane depolarization and NOX2 assembly.  相似文献   

7.
Angiopoietin‐2 (Ang2) is a Tie‐2 ligand that destabilizes vascular structures, allowing for neovascularization or vessel regression depending on local vascular endothelial cell growth factor (VEGF) concentrations. Although various stimuli have been shown to affect Ang2 expression, information on the underlying mechanisms involved in Ang2 production in endothelial cells (EC) is just beginning to emerge. In the present study, we have used adenovirus‐mediated gene transfer and pharmacological inhibitors to examine the role of the PTEN/PI3‐K/Akt pathway on Ang2 release. Inhibition of PI3‐kinase with wortmannin led to a stimulation of basal Ang2 release in EC, while overexpression of an active form of Akt reduced Ang2. In addition, adenovirus‐mediated gene transfer of the phosphatase PTEN stimulated Ang2 release. Incubation of the cells with Ang1, an agent that activates the PI3‐K/Akt pathway in EC, reduced Ang2 release. This effect of Ang1 could be prevented by wortmannin and LY‐294002 pretreatment. Similarly, in VEGF‐treated EC the increase in Ang2 production observed was greater in the presence of a PI3‐K inhibitor. Our observations that PTEN acts as a positive modulator of Ang2 release, while activation of the PI3‐K/Akt pathway downregulates Ang2, reveal an additional mechanism through which the PTEN/PI3‐K/Akt pathway could affect the angiogenic process. J. Cell. Physiol. 209: 239, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

8.
9.
The study was designed to investigate the effect of retinol binding protein (RBP)-4 on the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, which mediate the effects of insulin in vascular endothelial cells. The effects of RBP4 on nitric oxide (NO) and insulin-stimulated endothelin-1 (ET-1) secretion and on phosphorylation (p) of Akt, endothelial NO synthetase (eNOS), and extracellular signal-regulated kinase (ERK)1/2 were investigated in bovine vascular aortic endothelial cells (BAECs). RBP4 showed an acute vasodilatatory effect on aortic rings of rats within a few minutes. In BAECs, RBP4-treatment for 5 min significantly increased NO production, but inhibited insulin-stimulated ET-1 secretion. RBP4-induced NO production was not inhibited by tetraacetoxymethylester (BAPTA-AM), an intracellular calcium chelator, but was completely abolished by wortmannin, a PI3K inhibitor. RBP4 significantly increased p-Akt and p-eNOS production, and significantly inhibited p-ERK1/2 production. Triciribine, an Akt inhibitor, and wortmannin significantly inhibited RBP4-induced p-Akt and p-eNOS production. Inhibition of Akt1 by small interfering RNA decreased p-eNOS production enhanced by RBP4 in human umbilical vein endothelial cells. In conclusion, RBP4 has a robust acute effect of enhancement of NO production via stimulation of part of the PI3K/Akt/eNOS pathway and inhibition of ERK1/2 phosphorylation and insulin-induced ET-1 secretion, probably in the MAPK pathway, which results in vasodilatation.  相似文献   

10.
11.
Endothelial nitric oxide synthase (eNOS) is a key enzyme responsible for the regulation of vascular homeostasis. Many humor factors and mechanical forces can affect eNOS activity via phosphorylation modification but the mechanisms involved vary with stimuli applied. We have demonstrated that cytochrome P450 (CYP) epoxygenase-dependent metabolites of arachidonic acid, epoxyeicosatrienoic acids (EETs), can robustly up-regulate eNOS expression and its activity, however the relevant signaling pathways responsible for activity regulation are not well known. In this study, we explored the role of PI3 kinase (PI3K)/protein kinase B (Akt) signaling pathway in eNOS expression and its phosphorylation in response to EETs via direct addition of EETs into cultured bovine aorta endothelial cells (BAECs) and recombinant adeno-associated virus-mediated transfection of CYP epoxygenase genes CYPF87V and CYP2C11 to produce endogenous EETs followed by co-treatment with PI3K or Akt inhibitor. Results show that both exogenous and endogenous EETs could remarkably enhance eNOS expression and its phosphorylation at Ser1179 and Thr497 residues; PI3K inhibitor LY294002 could inhibit EETs-induced increase in eNOS-Ser(P)1179 but had no effect on the change of eNOS-Thr(P)497, while Akt inhibitor could attenuate the increase in phosphor-eNOS at both residues; both of the two inhibitors could block EETs-enhanced eNOS expression. These results lead to conclusions: (i) EETs-mediated regulation of eNOS activity may be related with the changes of phosphorylation level at eNOS-Ser1179 via PI3K/Akt and eNOS-Thr497 via Akt; (ii) PI3K/Akt signaling pathway is involved in the up-regulation of eNOS expression by EETs.  相似文献   

12.
Dual ligand treatment of streptavidin(SA)-biotin and fibronectin (Fn) enhances the adhesion of endothelial cells (EC) onto synthetic surfaces and promotes the quiescent phenotype of adherent EC. The current study investigates the effect of the dual ligand on the expression of endothelial genes in static culture and under shear stress (4 h at 10 dynes/cm2). Expression of 23 genes in the classes of signaling, cytoskeleton/ECM, vasoregulation, and shear-responsive were examined. Eight genes (argininosuccinate synthetase, K+ channel, TGFbeta, Mn-SOD, alpha-tubulin, t-PA, COX2, and eNOS) were significantly upregulated by shear stress. Two genes (caveolin-1 and ET-1) were downregulated by shear stress. Three genes (RhoA, elastin, alpha-actinin) were upregulated by the dual ligand treatment in static culture, and four genes (FAK, elastin, COX2, and eNOS) were upregulated when the dual ligand and shear stress were applied simultaneously. Northern blot analyses on FAK, RhoA, elastin, and alpha-actinin revealed similar results. The results suggest (1) the use of SA-biotin to supplement EC adhesion enhances the integrity of the EC cytoskeleton by upregulating the expression of cytoskeleton/ECM genes, and (2) a likely relationship between the expression of cytoskeleton/ECM genes and the downstream events, such as the shear-induced expression of eNOS and COX2 genes. Analyses presented in this study provide insights into the mechanism by which SA-biotin-supplemented EC mediate gene expression.  相似文献   

13.
Vascular cell signaling by membrane estrogen receptors   总被引:1,自引:0,他引:1  
Kim KH  Moriarty K  Bender JR 《Steroids》2008,73(9-10):864-869
  相似文献   

14.
Vascular endothelial cells play crucial roles in regulating cardiovascular function, maintaining car-diovascular homeostasis and preventing the occur-rence of cardiac and cerebral vascular diseases. All these protective effects are fulfilled through various vasoactive products secreted by endothelium including nitric oxide (NO), prostacyclin (PGI2) and endothe-lium-derived hyperpolarizing factor (EDHF). NO, pro-duced from L-arginine by endothelial nitric-oxide synthase (eNOS), is an impor…  相似文献   

15.
PPAR activators inhibit endothelial cell migration by targeting Akt   总被引:12,自引:0,他引:12  
Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose metabolism and exert several vascular effects that may provide a dual benefit of these receptors on metabolic disorders and atherosclerotic vascular disease. Endothelial cell migration is a key event in the pathogenesis of atherosclerosis. We therefore investigated the effects of lipid-lowering PPARalpha-activators (fenofibrate, WY14643) and antidiabetic PPARgamma-activators (troglitazone, ciglitazone) on this endothelial cell function. Both PPARalpha- and PPARgamma-activators significantly inhibited VEGF-induced migration of human umbilical vein endothelial cells (EC) in a concentration-dependent manner. Chemotactic signaling in EC is known to require activation of two signaling pathways: the phosphatidylinositol-3-kinase (PI3K)-->Akt- and the ERK1/2 mitogen-activated protein kinase (ERK MAPK) pathway. Using the pharmacological PI3K-inhibitor wortmannin and the ERK MAPK-pathway inhibitor PD98059, we observed a complete inhibition of VEGF-induced EC migration. VEGF-induced Akt phosphorylation was significantly inhibited by both PPARalpha- and gamma-activators. In contrast, VEGF-stimulated ERK MAPK-activation was not affected by any of the PPAR-activators, indicating that they inhibit migration either downstream of ERK MAPK or independent from this pathway. These results provide first evidence for the antimigratory effects of PPAR-activators in EC. By inhibiting EC migration PPAR-activators may protect the vasculature from pathological alterations associated with metabolic disorders.  相似文献   

16.
17.
Phosphoinositide 3-kinase (PI3K) pathway exerts its effects through Akt, its downstream target molecule, and thereby regulates various cell functions including cell proliferation, cell transformation, apoptosis, tumor growth, and angiogenesis. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been implicated in regulating cell survival signaling through the PI3K/Akt pathway. However, the mechanism by PI3K/PTEN signaling regulates angiogenesis and tumor growth in vivo remains to be elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in tumor angiogenesis. The effect of PTEN on VEGF-mediated signal in pancreatic cancer is unknown. This study aimed to determine the effect of PTEN on both the expression of VEGF and angiogenesis. Toward that end, we used the siRNA knockdown method to specifically define the role of PTEN in the expression of VEGF and angiogenesis. We found that siRNA-mediated inhibition of PTEN gene expression in pancreatic cancer cells increase their VEGF secretion, up-modulated the proliferation, and migration of co-cultured vascular endothelial cell and enhanced tubule formation by HUVEC. In addition, PTEN modulated VEGF-mediated signaling and affected tumor angiogenesis through PI3K/Akt/VEGF/eNOS pathway.  相似文献   

18.
Ghrelin is an orexigenic peptide hormone secreted by the stomach. In patients with metabolic syndrome and low ghrelin levels, intra-arterial ghrelin administration acutely improves their endothelial dysfunction. Therefore, we hypothesized that ghrelin activates endothelial nitric oxide synthase (eNOS) in vascular endothelium, resulting in increased production of nitric oxide (NO) using signaling pathways shared in common with the insulin receptor. Similar to insulin, ghrelin acutely stimulated increased production of NO in bovine aortic endothelial cells (BAEC) in primary culture (assessed using NO-specific fluorescent dye 4,5-diaminofluorescein) in a time- and dose-dependent manner. Production of NO in response to ghrelin (100 nM, 10 min) in human aortic endothelial cells was blocked by pretreatment of cells with NG-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), wortmannin [phosphatidylinositol (PI) 3-kinase inhibitor], or (D-Lys3)-GHRP-6 (selective antagonist of ghrelin receptor GHSR-1a), as well as by knockdown of GHSR-1a using small-interfering (si) RNA (but not by mitogen/extracellular signal-regulated kinase inhibitor PD-98059). Moreover, ghrelin stimulated increased phosphorylation of Akt (Ser473) and eNOS (Akt phosphorylation site Ser1179) that was inhibitable by knockdown of GHSR-1a using siRNA or by pretreatment of cells with wortmannin but not with PD-98059. Ghrelin also stimulated phosphorylation of mitogen-activated protein (MAP) kinase in BAEC. However, unlike insulin, ghrelin did not stimulate MAP kinase-dependent secretion of the vasoconstrictor endothelin-1 from BAEC. We conclude that ghrelin has novel vascular actions to acutely stimulate production of NO in endothelium using a signaling pathway that involves GHSR-1a, PI 3-kinase, Akt, and eNOS. Our findings may be relevant to developing novel therapeutic strategies to treat diabetes and related diseases characterized by reciprocal relationships between endothelial dysfunction and insulin resistance.  相似文献   

19.
Icariin, a flavonoid isolated from Epimedii herba, stimulated phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177, Akt (Ser473) and ERK1/2 (Thr202/Tyr204). The icariin-induced eNOS phosphorylation was abolished by an androgen receptor (AR) antagonist, nilutamide in human umbilical vein endothelial cells (HUVECs). Furthermore, it was also reduced in the cells transfected with small interfering RNA in which the expression of AR was broken down. The icariin-induced eNOS phosphorylation was inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. These data suggest that icariin stimulates release of NO by AR-dependent activation of eNOS in HUVECs. PI3K/Akt and MAPK-ERK kinase (MEK)/ERK1/2 pathways were involved in the phosphorylation of eNOS by icariin.  相似文献   

20.
Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid that elicits numerous biological responses in endothelial cells mediated by a family of G protein-coupled EDG receptors. Stimulation of EDG receptors by S1P has been shown to activate the endothelial isoform of nitric-oxide synthase (eNOS) in heterologous expression systems (Igarashi, J., and Michel, T. (2000) J. Biol. Chem. 275, 32363-32370). However, the signaling pathways that modulate eNOS regulation by S1P/EDG in vascular endothelial cells remain less well understood. We now report that S1P treatment of bovine aortic endothelial cells (BAEC) acutely increases eNOS enzyme activity; the EC(50) for S1P activation of eNOS is approximately 10 nm. The magnitude of eNOS activation by S1P in BAEC is equivalent to that elicited by the agonist bradykinin. S1P treatment activates Akt, a protein kinase implicated in phosphorylation of eNOS. S1P treatment of BAEC leads to eNOS phosphorylation at Ser(1179), a residue phosphorylated by Akt; an eNOS mutant in which this Akt phosphorylation site is inactivated shows attenuated S1P-induced eNOS activation. S1P-induced activation both of Akt and of eNOS is inhibited by pertussis toxin, by the phosphoinositide 3-kinase inhibitor wortmannin, and by the intracellular calcium chelator BAPTA (1,2-bis(aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). By contrast to S1P, activation of G protein-coupled bradykinin B2 receptors neither activates kinase Akt nor promotes Ser(1179) eNOS phosphorylation despite robustly activating eNOS enzyme activity. Understanding the differential regulation of protein kinase pathways by S1P and bradykinin may lead to the identification of new points for eNOS regulation in vascular endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号