首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Due to the extremely limited proliferative capacity of adult cardiomyocytes, human embryonic (pluripotent) stem cell derived cardiomyocytes (hESC-CMs) are currently almost the only reliable source of human heart cells which are suited to large-scale production. These cells have the potential for wide-scale application in drug discovery, heart disease research and cell-based heart repair. Embryonic atrial-, ventricular- and nodal-like cardiomyocytes can be obtained from differentiated human embryonic stem cells (hESCs). In recent years, several highly efficient cardiac differentiation protocols have been developed. Significant progress has also been made on understanding cardiac subtype specification, which is the key to reducing the heterogeneity of hESC-CMs, a major obstacle to the utilization of these cells in medical research and future cell-based replacement therapies. Herein we review recent progress in cardiac differentiation of hESCs and cardiac subtype specification, and discuss potential applications in drug screening and cell-based heart regeneration.  相似文献   

4.
m~6A是真核生物m RNA中重要的转录后修饰,METTL3作为m~6A甲基转移酶复合物中的重要组分,在细胞重编程、胚胎干细胞和诱导多能干细胞的干性维持、胚胎发育等过程中发挥重要作用。为了揭示猪METTL3的表达模式,对不同物种METTL3蛋白序列进行了比对,用RT-PCR检测了METTL3基因在不同猪组织和细胞中的表达情况,并确认了METTL3的细胞核定位。为了研究METTL3对猪干细胞多能基因表达的调控作用,克隆了猪METTL3编码区序列,设计了METTL3干扰片段,并构建了相应的过表达和沉默载体。发现干扰METTL3的表达后,猪多能干细胞出现类似na?ve状态的细胞克隆,NANOG、OCT4和LIN28A表达水平显著升高。在猪多能干细胞培养基中添加m~6A甲基化抑制剂环亮氨酸培养细胞48 h后,试验结果与干扰METTL3表达的结果一致。本研究为优化猪多能干细胞的培养体系提供了新的方向和依据。  相似文献   

5.
目的:建立致心律失常性右室心肌病(ARVC)患者特异性的诱导性多能干细胞(iPSCs),为研究ARVC发病机制提供研究模型。方法:培养来源于ARVC患者皮肤成纤维细胞,并进行突变位点测序鉴定。通过仙台病毒转导入外源性多能转录因子,将ARVC患者皮肤细胞诱导为iPSCs,结合免疫荧光法,实时荧光定量PCR,以及体内外三胚层形成实验对iPS细胞全能型进行鉴定。通过调控Wnt信号通路诱导iPS细胞定向分化为心肌细胞。结果:ARVC患者来源的iPSCs显示碱性磷酸酶阳性,多能性相关基因高表达,胚胎干细胞标志物Oct4,SSEA4,TRA-1-81阳性。体外悬浮培养形成的拟胚体以及体内畸胎瘤形成实验均显示ARVC-iPSCs具有向3个胚层分化能力。经过体外心肌定向,ARVC-iPSC可诱导产生自主节律性搏动细胞团,免疫荧光显示cTnT阳性。结论:本研究使用仙台病毒,建立了无插入型ARVC患者特异的诱导性多能干细胞系,该细胞系具有多能分化特性,并可定向分化为心肌细胞,为研究ARVC的致病因素和药物筛选提供宝贵的实验模型。  相似文献   

6.
贾振伟 《遗传》2016,38(7):603-611
线粒体是细胞内重要的细胞器,主要功能是通过氧化磷酸化为细胞生命活动提供能量。近年来,研究表明,在多潜能干细胞(Pluripotent stem cells, PSCs)中线粒体表现出独有的特征,即在多能性状态下,PSCs主要依靠糖酵解提供能量,其分化期间线粒体氧化磷酸化代谢能力逐渐增强。相反,体细胞重编程为多潜能干细胞期间,线粒体氧化磷酸化向糖酵解途径的转变是其成功重编程必需的代谢过程。另外,线粒体通过生物合成和形态结构的动态重塑维持了PSCs多能性、诱导分化及诱导多能干细胞(Induced pluripotent stem cells, iPSCs)的重编程。因此,本文综述了PSCs线粒体形态结构及其在调控PSCs多能性、合成代谢、氧化还原状态的平衡、分化及重新编程中的作用,为深入了解线粒体调控PSCs功能的作用提供理论基础。  相似文献   

7.
8.
Generating lineage-committed intestinal stem cells from embryonic stem cells (ESCs) could provide a tractable experimental system for understanding intestinal differentiation pathways and may ultimately provide cells for regenerating damaged intestinal tissue. We tested a two-step differentiation procedure in which ESCs were first cultured with activin A to favor formation of definitive endoderm, and then treated with fibroblast-conditioned medium with or without Wnt3A. The definitive endoderm expressed a number of genes associated with gut-tube development through mouse embryonic day 8.5 (Sox17, Foxa2, and Gata4 expressed and Id2 silent). The intestinal stem cell marker Lgr5 gene was also activated in the endodermal cells, whereas the Msi1, Ephb2, and Dcamkl1 intestinal stem cell markers were not. Exposure of the endoderm to fibroblast-conditioned medium with Wnt3A resulted in the activation of Id2, the remaining intestinal stem cell markers and the later gut markers Cdx2, Fabp2, and Muc2. Interestingly, genes associated with distal gut-associated mesoderm (Foxf2, Hlx, and Hoxd8) were also simulated by Wnt3A. The two-step differentiation protocol generated gut bodies with crypt-like structures that included regions of Lgr5-expressing proliferating cells and regions of cell differentiation. These gut bodies also had a smooth muscle component and some underwent peristaltic movement. The ability of the definitive endoderm to differentiate into intestinal epithelium was supported by the vivo engraftment of these cells into mouse colonic mucosa. These findings demonstrate that definitive endoderm derived from ESCs can carry out intestinal cell differentiation pathways and may provide cells to restore damaged intestinal tissue.  相似文献   

9.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

10.
Stem cells are an important therapeutic source for recovery and regeneration, as their ability of self-renewal and differentiation offers an unlimited supply of highly specialized cells for therapeutic transplantation. Growth factors and serum are essential for maintaining the characteristics of stem cells in culture and for inducing differentiation. Because growth factors are produced mainly in bacterial (Escherichia coli) or animal cells, the use of such growth factors raises safety concerns that need to be resolved for the commercialization of stem cell therapeutics. To overcome this problem, studies on proteins produced in plants have been conducted. Here, we describe the functions of plant-derived fibroblast growth factor 2 (FGF2) and human serum albumin in the maintenance and differentiation of human-induced pluripotent stem cells (hiPSCs). Plant-derived FGF2 and human epidermal growth factor EGF were able to differentiate hiPSCs into neural stem cells (NSCs). These NSCs could differentiate into neuronal and glial cells. Our results imply that culturing stem cells in animal-free culture medium, which is composed of plant-derived proteins, would facilitate stem cell application research, for example, for cell therapy, by reducing contamination risk.  相似文献   

11.
12.
Induced pluripotent stem (iPS) cells have potential to differentiate into T lymphocytes, however, the actual ability of iPS cells to develop into T lineages is not clear. In this study, we co-cultured iPS cells on OP9 cells expressing the Notch ligand Delta-like 1 (DL1), the iPS cells differentiated into T lymphocytes. In addition, in vitro stimulation of iPS cell-derived T lymphocytes resulted in secretion of IL-2 and IFN-γ. Moreover, adoptive transfer of iPS cell-derived T lymphocytes into Rag-deficient mice reconstituted their T cell pools. These results indicate that iPS cells are able to follow the normal program of T cell differentiation.  相似文献   

13.
Induced pluripotent stem cells (iPSCs) refer to stem cells that are artificially produced using a new technology known as cellular reprogramming, which can use gene transduction in somatic cells. There are numerous potential applications for iPSCs in the field of stem cell biology becauase they are able to give rise to several different cell features of lineages such as three-germ layers. Primordial germ cells, generated via in vitro differentiation of iPSCs, have been demonstrated to produce functional gametes. Therefore, in this review we discussed past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells with an emphasis on iPSCs. Although this domain of research is still in its infancy, exploring development mechanisms of germ cells is promising, especially in humans, to promote future reproductive and developmental engineering technologies. While few studies have evaluated the ability and efficiency of iPSCs to differentiate toward male germ cells in vitro by different inducers, the given effect was investigated in this review.  相似文献   

14.
《Developmental cell》2021,56(17):2455-2470.e10
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

15.
Diabetes is one of the most common diseases in the world that is chronic, progressive, and costly, and causes many complications. Common drug therapies are not able to cure it, and pancreas transplantation is not responsive to the high number of patients. The production of the insulin producing cells (IPCs) from the stem cells in the laboratory and their transplantation to the patient's body is one of the most promising new approaches. In this study, the differentiation potential of the induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) into IPCs was compared to each other while cultured on poly(lactic-co-glycolic) acid (PLGA)/polyethylene glycol (PEG) nanofibrous scaffold as a 3D substrate and tissue culture polystyrene (TCPS) as a 2D substrate. Although the expression level of the insulin, Glut2 and pdx-1 genes in stem cells cultured on 3D substrate was significantly higher than the stem cells cultured on 2D substrate, the highest expression level of these genes was detected in the iPSCs cultured on PLGA-PEG. Insulin and C-peptide secretions from differentiated cells were also investigated and the results showed that secretions in cultured iPSCs on the PLGA-PEG were significantly higher than cultured iPSCs on the TCPS and cultured MSCs on both PLGA-PEG and TCPS. In addition, insulin protein was also expressed in the cultured iPSCs on the PLGA-PEG significantly higher than cultured MSCs on the PLGA-PEG. It can be concluded that differentiation potential of iPSCs into IPCs is significantly higher than human MSCs at both 2D and 3D culture systems.  相似文献   

16.
17.
Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification.  相似文献   

18.
19.
人类诱导多能干细胞(induced pluripotent stem cells,iPS细胞)的建立被公认为目前最重要的科技进展之一。iPS细胞在动物疾病模型上的成功治疗,病患特异性iPS细胞的研究及iPS细胞的定向分化研究将有可能使人们避开治疗性克隆的伦理和技术障碍,给人类疾病的干细胞治疗带来光明的前景。本文从iPS细胞的诱导策略和方法,来源细胞及筛选、重编程机制的研究现状、应用前景以及研究中存在的问题等方面对其作一综述和讨论。  相似文献   

20.
目前,体外生成人红细胞的实验技术较为复杂,为优化诱导步骤,采用两步法将人多能干细胞诱导分化为红细胞。首先,利用人多能干细胞(包括Rh阴性A型的脐带间充质干细胞(hUCMSC~(Rh-A))和人iPS(hiPS)细胞)在BVF培养液中进行诱导分化得到CD31~~+和CD34~+的阳性细胞群。经PCR和流式细胞仪检测CD31和CD34的表达发现,hUCMSC~(Rh-A)细胞诱导得到的CD31和CD34阳性细胞率分别是5.3%和22.7%;hiPS细胞诱导得到的CD31和CD34阳性细胞率分别是31.2%和8.2%。第二步,将获得的CD31~+和CD34~+的阳性细胞群在多种生长因子的作用下经过36 d诱导,分化为成熟红细胞。经吉姆萨染色检测得到的红细胞在形态和大小上与正常人红细胞相近,且存在血细胞去核的现象。荧光定量RT-PCR检测到了globin的表达,其中β-globin的表达量占20%以上。将得到的红细胞收集到离心管中,自然沉降后可见红色的红细胞沉淀。上述研究为大量制备人红细胞提供了新的有效的技术方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号