首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Differentiation of 3T3-L1 cells into adipocytes involves a highly orchestrated series of complex events in which microRNAs might play an essential role. In this study, we found that the overexpression of microRNA-344 (miR-344) inhibits 3T3-L1 cell differentiation and decreases triglyceride accumulation after MDI stimulation. We demonstrated that miR-344 directly targets the 3′ UTR of GSK3β (Glycogen synthase kinase 3 beta). Knockdown of GSK3β with siRNA results in inhibiting 3T3-L1 differentiation, while its overexpression restores the effect of miR-344. In addition, miR-344 elevates the level of active β-catenin, which is the downstream effector of GSK3β in the Wnt/β-catenin signaling pathway. These data indicate that miR-344 inhibits adipocyte differentiation via targeting GSK3β and subsequently activating the Wnt/β-catenin signaling pathway.  相似文献   

2.
It was previously shown that 14-3-3η is overexpressed in the synovial fluid of patients with joint inflammation, which is often associated with growth failure. In this study, we investigated the role of 14-3-3η in chondrogenesis using ATDC5 cells. Upon treatment with TNF-α, cells overexpressed 14-3-3η with inhibition of chondrogenesis. Chondrogenesis was also inhibited by overexpression of 14-3-3η without TNF-α treatment, whereas silencing of 14-3-3η promoted chondrogenic differentiation. Further, G1 phase arrest was inhibited by overexpression of 14-3-3η. In summary, we suggest that 14-3-3η plays a regulatory role in chondrogenic differentiation.  相似文献   

3.
《Journal of lipid research》2017,58(6):1055-1066
Interleukin (IL)-1β is a potent pro-inflammatory cytokine of innate immunity involved in host defense. High systemic IL-1β levels, however, cause life-threatening inflammatory diseases, including systemic inflammatory response syndrome. In response to various danger signals, the pro-form of IL-1β is synthesized and stays in the cytoplasm unless a second signal, such as extracellular ATP, activates the inflammasome, which enables processing and release of mature IL-1β. As pulmonary surfactant is known for its anti-inflammatory properties, we hypothesize that surfactant inhibits ATP-induced release of IL-1β. Lipopolysaccharide-primed monocytic U937 cells were stimulated with an ATP analog in the presence of natural or synthetic surfactant composed of recombinant surfactant protein (rSP)-C, palmitoylphosphatidylglycerol, and dipalmitoylphosphatidylcholine (DPPC). Both surfactant preparations dose-dependently inhibited IL-1β release from U937 cells. DPPC was the active constituent of surfactant, whereas rSP-C and palmitoylphosphatidylglycerol were inactive. DPPC was also effective in primary mononuclear leukocytes isolated from human blood. Experiments with nicotinic antagonists, siRNA technology, and patch-clamp experiments suggested that stimulation of nicotinic acetylcholine receptors (nAChRs) containing subunit α9 results in a complete inhibition of the ion channel function of ATP receptor, P2X7. In conclusion, the surfactant constituent, DPPC, efficiently inhibits ATP-induced inflammasome activation and maturation of IL-1β in human monocytes by a mechanism involving nAChRs.  相似文献   

4.
Brown adipocytes play an important role in regulating energy balance, and there is a good correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism of white adipocyte differentiation has been well characterized, brown adipogenesis has not been studied extensively. Moreover, extracellular factors that regulate brown adipogenic differentiation are not fully understood. Here, we assessed the mechanism of the regulatory action of myostatin in brown adipogenic differentiation using primary brown preadipocytes. Our results clearly showed that differentiation of brown adipocytes was significantly inhibited by myostatin treatment. In addition, myostatin-induced suppression of brown adipogenesis was observed during the early phase of differentiation. Myostatin induced the phosphorylation of Smad3, which led to increased β-catenin stabilization. These effects were blocked by treatment with a Smad3 inhibitor. Expression of brown adipocyte-related genes, such as PPAR-γ, UCP-1, PGC-1α, and PRDM16, were dramatically down-regulated by treatment with myostatin, and further down-regulated by co-treatment with a β-catenin activator. Taken together, the present study demonstrated that myostatin is a potent negative regulator of brown adipogenic differentiation by modulation of Smad3-induced β-catenin stabilization. Our findings suggest that myostatin could be used as an extracellular factor in the control of brown adipocyte differentiation.  相似文献   

5.
We used cDNA microarray to identify transforming growth factor beta (TGF-β) responsive target genes during osteoblast development and found that nephronectin (Npnt) is one such gene that is significantly down-regulated. Here we report the role of TGF-β in regulating Npnt-mediated osteoblast differentiation. We found that the effect of TGF-β on Npnt expression is associated with a change in cell morphology in a dose-dependent manner. Npnt-induced osteoblast differentiation was also inhibited by TGF-β, which changed cell morphology from cuboidal to fibroblastic, an indication that osteoblast differentiation was disrupted. Furthermore, TGF-β inhibited differentiation of osteoblasts transfected with various truncated Npnt constructs, suggesting that TGF-β can exert a down-stream effect on Npnt function. Our results suggest that TGF-β can inhibit osteoblast differentiation through various mechanisms.  相似文献   

6.
7.
8.
Transforming growth factor-β (TGF-β) is a critical regulator of bone development and remodeling. TGF-β must be activated from its latent form in order to signal. Thrombospondin-1 (TSP1) is a major regulator of latent TGF-β activation and TSP1 control of TGF-β activation is critical for regulation of TGF-β activity in multiple diseases. Bone marrow-derived mesenchymal stem cells (MSCs) have osteogenic potential and they participate in bone remodeling in injury and in response to tumor metastasis. Since both TSP1 and TGF-β inhibit osteoblast differentiation, we asked whether TSP1 blocks osteoblast differentiation of MSCs through its ability to stimulate TGF-β activation. TSP1 added to human bone marrow-derived MSCs under growth conditions increases active TGF-β. Cultured MSCs express TSP1 and both TSP1 expression and TGF-β activity decrease during osteoblast differentiation. TSP1 and active TGF-β block osteoblast differentiation of MSCs grown in osteogenic media as measured by decreased Runx2 and alkaline phosphatase expression. The inhibitory effect of TSP1 on osteoblast differentiation is due to its ability to activate latent TGF-β, since a peptide which blocks TSP1 TGF-β activation reduced TGF-β activity and restored osteoblast differentiation as measured by increased Runx2 and alkaline phosphatase expression. Anti-TGF-β neutralizing antibody also increased alkaline phosphatase expression in the presence of TSP1. These studies show that TSP1 regulated TGF-β activity is a critical determinant of osteoblast differentiation.  相似文献   

9.
Atherosclerosis is a chronic inflammatory disease and the underlying cause of most cardiovascular diseases. Interleukin (IL)-1β facilitates early atherogenic lesion formation by increasing monocyte adhesion to endothelial cells via upregulation of adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1). MicroRNAs (miRNAs) have been shown to be associated with inflammatory conditions in the vascular system. The expression of circulating miR-1914–5p is reportedly downregulated in patients with cardiovascular diseases. However, the role of miR-1914–5p downregulation in IL-1β–induced endothelial cell dysfunction and the effect of miR-1914–5p on lesion formation remain unclear. Therefore, we investigated whether miR-1914–5p is associated with monocyte adhesion in human endothelial cells. IL-1β decreased miR-1914–5p expression in EA.hy926 cells. In addition, miR-1914–5p depletion enhanced ICAM-1 expression and monocyte adhesion in EA.hy926 cells. Moreover, miR-1914–5p mimic suppressed monocyte adhesion and ICAM-1 expression induced by IL-1β in endothelial cells. These results suggest that suppression of miR-1914–5p expression by IL-1β may be an important regulator in mediating monocyte adhesion in endothelial cells. Further investigation of miR-1914–5p may lead to the development of novel therapeutic strategies for atherosclerosis.  相似文献   

10.
S Meng  J Cao  L Wang  Q Zhou  Y Li  C Shen  X Zhang  C Wang 《PloS one》2012,7(7):e40323
Endothelial progenitor cells (EPCs) play an important role in tissue repair after ischemic heart disease. In particular, the recovery of endothelial function is reliant on the ability and rate of EPCs differentiate into mature endothelial cells. The present study evaluated the effect of microRNA 107 (miR-107) on the mechanism of EPCs differentiation. EPCs were isolated from rats' bone marrow and miR-107 expression of EPCs in hypoxic and normoxic conditions were measured by real-time qualitative PCR. CD31 was analyzed by flow cytometry and eNOS was examined by real-time qualitative PCR and western blotting and these were used as markers of EPC differentiation. In order to reveal the mechanism, we used miR107 inhibitor and lentiviral vector expressing a short hairpin RNA (shRNA) that targets miR-107 and hypoxia-inducible factor-1 β (HIF-1β) to alter miR107 and HIF-1β expression. MiR-107 expression were increased in EPCs under hypoxic conditions. Up-regulation of miR-107 partly suppressed the EPCs differentiation induced in hypoxia, while down-regulation of miR-107 promoted EPC differentiation. HIF-1β was the target. This study indicated that miR-107 was up-regulated in hypoxia to prevent EPCs differentiation via its target HIF-1β. The physiological mechanisms of miR-107 must be evaluated if it is to be used as a potential anti-ischemia therapeutic regime.  相似文献   

11.
Chondrocyte apoptosis has been implicated as a major pathological osteoarthritis (OA) change in humans and experimental animals. We evaluate the ability of miR-186 on chondrocyte apoptosis and proliferation in OA and elucidate the underlying mechanism concerning the regulation of miR-186 in OA. Gene expression microarray analysis was performed to screen differentially expressed messenger RNAs (mRNAs) in OA. To validate the effect of miR-186 on chondrocyte apoptosis, we upregulated or downregulated endogenous miR-186 using mimics or inhibitors. Next, to better understand the regulatory mechanism for miR-186 governing SPP1, we suppressed the endogenous expression of SPP1 by small interfering RNA (siRNA) against SPP1 in chondrocytes. We identified SPP1 is highly expressed in OA according to an mRNA microarray data set GSE82107. After intra-articular injection of papain into mice, the miR-186 is downregulated while the SPP1 is reciprocal, with dysregulated PI3K–AKT pathway in OA cartilages. Intriguingly, miR-186 was shown to increase chondrocyte survival, facilitate cell cycle entry in OA chondrocytes, and inhibit chondrocyte apoptosis in vitro by modulation of pro- and antiapoptotic factors. The determination of luciferase activity suggested that miR-186 negatively targets SPP1. Furthermore, we found that the effect of miR-186 suppression on OA chondrocytes was lost when SPP1 was suppressed by siRNA, suggesting that miR-186 affected chondrocytes by targeting and depleting SPP1, a regulator of PI3K–AKT pathway. Our findings reveal a novel mechanism by which miR-186 inhibits chondrocyte apoptosis in OA by interacting with SPP1 and regulating PI3K–AKT pathway. Restoring miR-186 might be a future therapeutic strategy for OA.  相似文献   

12.
MicroRNAs (miRNAs) regulate activities in living organisms through various signaling pathways and play important roles in the development and progression of osteoporosis. The balance between osteogenic and adipogenic differentiation of rBMSCs is closely related to the occurrence of osteoporosis. ERα regulates bone metabolism in various tissues. However, the correlation among ERα, miRNAs, and the differentiation of rBMSCs is still unclear. In this study, we used lentivirus transfection into rBMSCs to construct an ERα-deficient model, analyzed the differences in expressed miRNAs between control and ERα-deficient rBMSCs. The results revealed that the expression of 25 miRNAs were upregulated, 164 miRNAs were downregulated, and some of the regulated miRNAs such as miR-210-3p and miR-214-3p were related to osteogenic or adipogenic differentiation, as well as to particular signaling pathways. Next, we overexpressed miR-210-3p to evaluate its effects on the osteogenic and adipogenic differentiation of rBMSCs, and identified the relationship among miR-210-3p, Wnt signaling pathway, and the differentiation of rBMSCs. The results indicated that ERα-deficient inhibited osteogenic differentiation, promoted adipogenic differentiation, and regulated the expression of some miRNAs. Meanwhile, overexpression of miR-210-3p promoted osteogenic differentiation and inhibited adipogenic differentiation of rBMSCs, processes likely to be related to the Wnt signaling pathway. In conclusion, we identified a group of upregulated and downregulated miRNAs in ERα-deficient rBMSCs that might play a vital role in regulating osteogenic or adipogenic differentiation. One of these, miR-210-3p, inhibited osteogenic differentiation and promoted adipogenic differentiation correlated with the Wnt signaling pathway in ERα-deficient rBMSCs, providing new insight into the regulation of bone metabolism.  相似文献   

13.
As the most common neurodegenerative disease, Alzheimer's disease (AD) is characterized by memory, perception, and behavioral damage, which may ultimately lead to emotional fluctuation and even lethal delirium. Increasing studies indicate that microRNAs (miRNAs) are associated with pathological features of AD. However, the role of miR-219-5p in AD progression is still unclear. In this study, the functions of miR-219-5p were analyzed in vitro and in vivo. miR-219-5p was notably overexpressed in brain tissues of patients with AD. The overexpression of miR-219-5p activated the phosphorylation of Tau-Ser198, Tau-Ser199, Tau-Ser201, and Tau-Ser422. We further showed that miR-219-5p could mediate a decrease in the protein levels of tau-tubulin kinase 1 (TTBK1) and glycogen synthase kinase 3β (GSK-3β) by directly binding to their 3′-untranslated region, thereby promoting the phosphorylation of tau in SH-SY5Y Cells. Rescue experiments further revealed that the phosphorylation of tau-mediated by miR-219-5p was dependent on the inhibition of TTBK1 and GSK-3β. Moreover, suppressing the expression of both TTBK1 and GSK-3β using miR-219-5p remarkably rescued AD-like symptoms in amyloid precursor protein/presenilin 1 mice. Our findings indicate that the upregulation of TTBK1 and GSK-3β mediated by the loss of miR-219-5p is a possible mechanism that contributes to tau phosphorylation and AD progression.  相似文献   

14.
Protein kinase C (PKC)-θ has been shown to be a critical TCR signaling molecule that promotes the activation and differentiation of naive T cells into inflammatory effector T cells. In this study, we demonstrate that PKC-θ-mediated signals inhibit inducible regulatory T cell (iTreg) differentiation via an AKT-Foxo1/3A pathway. TGF-β-induced iTreg differentiation was enhanced in PKC-θ(-/-) T cells or wild-type cells treated with a specific PKC-θ inhibitor, but was inhibited by the PKC-θ activator PMA, or by CD28 crosslinking, which enhances PKC-θ activation. PKC-θ(-/-) T cells had reduced activity of the AKT kinase, and the expression of a constitutively active form of AKT in PKC-θ(-/-) T cells restored the ability to inhibit iTreg differentiation. Furthermore, knockdown or overexpression of the AKT downstream targets Foxo1 and Foxo3a was found to inhibit or promote iTreg differentiation in PKC-θ(-/-) T cells accordingly, indicating that the AKT-Foxo1/3A pathway is responsible for the inhibition of iTreg differentiation of iTregs downstream of PKC-θ. We conclude that PKC-θ is able to control T cell-mediated immune responses by shifting the balance between the differentiation of effector T cells and inhibitory Tregs.  相似文献   

15.
Chronic rhinosinusitis (CRS) is featured with chronic symptoms of inflammation or infection in the nasal and sinus tissues. MicroRNAs (miRNAs/miRs), such as dysregulated expression of miR-125b and miR-26a, has been previously demonstrated to be related to CRS. The present study is intended to define the role of miR-335-5p in inflammation and the related mechanism in a mouse model of CRS. The differentially expressed genes associated with CRS were screened by microarray analysis. The targeting relationship between miR-335-5p and TPX2 was analyzed by target prediction program and dual luciferase reporter gene assay. The mouse model of CRS was established, and mice were introduced with miR-335-5p mimics, miR-335-5p inhibitors, or siRNA against TPX2 to explore the regulatory functions of miR-335-5p. The regulatory effect of miR-335-5p on inflammation with the involvement of the AKT signaling pathway was also analyzed with the expression of inflammatory cytokines and AKT signaling pathway-related factors measured. It was indicated that miR-335-5p regulated the TPX2 gene-mediated AKT signaling pathway. TPX2 was identified as a target gene of miR-335-5p, and miR-335-5p elevation inhibited the activation of the AKT signaling pathway. In mice with CRS, up-regulation of miR-335-5p or silence of TPX2 inhibited the inflammation, as evidenced by decreased levels of TNF-α, IL-6 and IL-8, and higher levels of GSK3β and IL-10. Collectively, miR-335-5p inhibits the activation of AKT signaling pathway by negatively mediating TPX2, which may confer anti-inflammatory protection in CRS.  相似文献   

16.

Introduction

The function of Glycogen Synthase Kinases 3β (GSK-3β) has previously been shown to be necessary for normal secondary palate development. Using GSK-3ß null mouse embryos, we examine the potential coordinate roles of Wnt and Hedgehog signaling on palatal ossification.

Methods

Palates were harvested from GSK-3β, embryonic days 15.0–18.5 (e15.0–e18.5), and e15.5 Indian Hedgehog (Ihh) null embryos, and their wild-type littermates. The phenotype of GSK-3β null embryos was analyzed with skeletal whole mount and pentachrome stains. Spatiotemporal regulation of osteogenic gene expression, in addition to Wnt and Hedgehog signaling activity, were examined in vivo on GSK-3β and Ihh +/+ and −/− e15.5 embryos using in situ hybridization and immunohistochemistry. To corroborate these results, expression of the same molecular targets were assessed by qRT-PCR of e15.5 palates, or e13.5 palate cultures treated with both Wnt and Hedgehog agonists and anatagonists.

Results

GSK-3β null embryos displayed a 48 percent decrease (*p<0.05) in palatine bone formation compared to wild-type littermates. GSK-3β null embryos also exhibited decreased osteogenic gene expression that was associated with increased Wnt and decreased Hedgehog signaling. e13.5 palate culture studies demonstrated that Wnt signaling negatively regulates both osteogenic gene expression and Hedgehog signaling activity, while inhibition of Wnt signaling augments both osteogenic gene expression and Hedgehog signaling activity. In addition, no differences in Wnt signaling activity were noted in Ihh null embryos, suggesting that canonical Wnt may be upstream of Hedgehog in secondary palate development. Lastly, we found that GSK-3β −/− palate cultures were “rescued” with the Wnt inhibitor, Dkk-1.

Conclusions

Here, we identify a critical role for GSK-3β in palatogenesis through its direct regulation of canonical Wnt signaling. These findings shed light on critical developmental pathways involved in palatogenesis and may lead to novel molecular targets to prevent cleft palate formation.  相似文献   

17.
The effect of priming stromal-vascular cells in primary cultures with magnesium-deficient (MgD) media on preadipocyte differentiation was studied. Cultures were derived from dorsal subcutaneous fat tissue of young pigs and maintained 3 d in serum-free control or MgD Dulbecco’s modified Eagle’s medium, 3 d in 10% fetal bovine serum and dexamethasone, and 6 d in insulin. At d 12 of culture, immunocytochemical and glycerophosphate dehydrogenase assays indicated depressed adipocyte differentiation in the MgD groups. Cultures were enriched for preadipocytes up to 50% of total cells. On the third day of treatment with control and MgD medium, total cell lysates were isolated and 50 μg of them were run on two-dimensional gel electrophoresis. The separated proteins from both treatment groups showed similar patterns. However, spots of proteins with predicted molecular weight in the range of 25.8–37.4 kDa and pI of 5.39–5.85 were sixfold denser from the MgD 10 groups than from the controls. These proteins migrate similarly to tumor necrosis factor-α (TNF-α). The amount of TNF-α in cell lysates from the MgD group was about 2.35 times greater than controls determined by TNF-α-ELISA. It is likely that proteins upregulated by MgD medium are TNF-α isoforms.  相似文献   

18.
BackgroundUnderstanding of the molecular mechanisms of miRNAs involved in osteoblast differentiation is important for the treatment of bone-related diseases.MethodsMC3T3-E1 cells were induced to osteogenic differentiation by culturing with bone morphogenetic protein 2 (BMP2). After transfected with miR-26b-3p mimics or inhibitors, the osteogenic differentiation of MC3T3-E1 cells was detected by ALP and ARS staining. Cell viability was analyzed by MTT. The expressions of miR-26b-3p and osteogenic related markers and signaling were examined by qPCR and western blot. Direct binding of miR-26b-3p and ER-α were determined by dual luciferase assay.ResultsmiR-26b-3p was significantly down-regulated during osteoblast differentiation. Overexpression of miR-26b-3p inhibited osteoblast differentiation, while inhibition of miR-26b-3p enhanced osteoblast differentiation. Further studies demonstrated miR-26b-3p inhibited the expression of estrogen receptor α (ER-α) by directly targeting to the CDS region of ER-α mRNA. Overexpression of ER-α rescued the suppression effects of miR-26b-3p on osteoblast differentiation, while knockdown of ER-α reversed the upregulation of osteoblast differentiation induced by knockdown of miR-26b-3p.ConclusionOur study demonstrates that miR-26b-3p suppresses osteoblast differentiation of MC3T3-E1 cells via directly targeting ER-α.  相似文献   

19.
Cardiac fibrosis after myocardial infarction (MI) is mainly associated with cardiac fibroblasts and its differentiation is the key pathological process. However, the cellular mechanism of fibroblast-to-myofibroblast conversion has not been clarified and a deeper mechanistic understanding is needed. We found that miR-574–5p was up-regulated in TGF-β-induced myofibroblast differentiation. Silencing transiently miR-574–5p in HCFs, we found that suppression of miR-574–5p decreased myofibroblasts differentiation as validated by expression levels of fibrosis related genes, EDU imaging assay, wound healing assay and transwell assays. Conversely, overexpression of miR-574–5p displayed opposite results. ARID3A was verified as a direct target gene of miR-574–5p and decreased level of ARID3A forced fibroblast-to-myofibroblast differentiation of TGF-β-induced HCFs. Our data suggests that miR-574–5p plays a pivotal role in human cardiac fibroblasts (HCFs) myofibroblast differentiation and demonstrates that miR-574–5p and arid3a may be a novel therapeutic target for cardiac fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号