首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adiponectin functions as a promoter of saliva secretion in rat submandibular gland via activation of adenosine monophosphate-activated protein kinase (AMPK) and increased paracellular permeability. Ca2+ mobilization is the primary signal for fluid secretion in salivary acinar cells. However, whether intracellular Ca2+ mobilization is involved in adiponectin-induced salivary secretion is unknown. Here, we found that full-length adiponectin (fAd) increased intracellular Ca2+ and saliva secretion in submandibular glands. Pre-perfusion with ethylene glycol-bis (2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) combined with thapsigargin (TG), an endoplasmic reticulum Ca2+-ATPase inhibitor, abolished fAd-induced salivary secretion, AMPK phosphorylation, and enlarged tight junction (TJ) width. Furthermore, in cultured SMG-C6 cells, co-pretreatment with EGTA and TG suppressed fAd-decreased transepithelial electrical resistance and increased 4-kDa FITC-dextran flux responses. Moreover, fAd increased phosphorylation of calcium/calmodulin-dependent protein kinase (CaMKKβ), a major kinase that is activated by elevated levels of intracellular Ca2+, but not liver kinase B1 phosphorylation. Pre-perfusion of the isolated gland with STO-609, an inhibitor of CaMKKβ, abolished fAd-induced salivary secretion, AMPK activation, and enlarged TJ width. CaMKKβ shRNA suppressed, whereas CaMKKβ re-expression rescued fAd-increased paracellular permeability. Taken together, these results indicate that adiponectin induced Ca2+ modulation in rat submandibular gland acinar cells. Ca2+-CaMKKβ pathway is required for adiponectin-induced secretion through mediating AMPK activation and increase in paracellular permeability in rat submandibular glands.  相似文献   

3.
Earlier studies have suggested a role for Ca2+ in regulatory volume decrease (RVD) in response to hypotonic stress through the activation of Ca2+-dependent ion channels (Kotera & Brown, 1993; Park et al., 1994). The involvement of Ca2+ in regulating cell volume in rat lacrimal acinar cells was therefore examined using a video-imaging technique to measure cell volume. The trivalent cation Gd3+ inhibited RVD, suggesting that Ca2+ entry is important and may be via stretch-activated cation channels. However, Fura-2 loaded cells did not show an increase in [Ca2+] i during exposure to hypotonic solutions. The absence of any changes in [Ca2+] i resulted from the buffering of cytosolic Ca2+ by Fura-2 during hypotonic shock and therefore inhibition of RVD. The intracellular Ca2+ chelator, BAPTA, also inhibited the RVD response to hypotonic shock. An increase in [Ca2+] i induced by either acetylcholine or ionomycin, was found to decrease cell volume under isotonic conditions in lacrimal acinar cells. Cell shrinkage was inhibited by tetraethylammonium ion, an inhibitor of Ca2+-activated K+ channels. On the basis of the presented data, we suggest an involvement of intracellular Ca2+ in controlling cell volume in lacrimal acinar cells. Received: 20 February 1998/Revised: 1 May 1998  相似文献   

4.
Salivary glands secrete saliva, a mixture of proteins and fluids, which plays an extremely important role in the maintenance of oral health. Loss of salivary secretion causes a dry mouth condition, xerostomia, which has numerous deleterious consequences including opportunistic infections within the oral cavity, difficulties in eating and swallowing food, and problems with speech. Saliva secretion is regulated by stimulation of specific signaling mechanisms within the acinar cells of the gland. Neurotransmitter-stimulated increase in cytosolic [Ca2+] ([Ca2+]i) in acinar cells is the primary trigger for salivary fluid secretion from salivary glands, the loss of which is a critical factor underlying dry mouth conditions in patients. The increase in [Ca2+]i regulates multiple ion channel and transport activities that together generate the osmotic gradient which drives fluid secretion across the apical membrane. Ca2+ entry mediated by the Store-Operated Ca2+ Entry (SOCE) mechanism provides the essential [Ca2+]i signals to trigger salivary gland fluid secretion. Under physiological conditions depletion of ER-Ca2+ stores is caused by activation of IP3R by IP3 and this provides the stimulus for SOCE. Core components of SOCE in salivary gland acinar cells are the plasma membrane Ca2+ channels, Orai1 and TRPC1, and STIM1, a Ca2+-sensor protein in the ER, which regulates both channels. In addition, STIM2 likely enhances the sensitivity of cells to ER-Ca2+ depletion thereby tuning the cellular response to agonist stimulation. Two major, clinically relevant, conditions which cause irreversible salivary gland dysfunction are radiation treatment for head-and-neck cancers and the autoimmune exocrinopathy, Sjögren's syndrome (pSS). However, the exact mechanism(s) that causes the loss of fluid secretion, in either condition, is not clearly understood. A number of recent studies have identified that defects in critical Ca2+ signaling mechanisms underlie salivary gland dysfunction caused by radiation treatment or Sjögren's syndrome (pSS). This chapter will discuss these very interesting and important studies.  相似文献   

5.
The secretion of fluid and electrolytes by salivary gland acinar cells requires the coordinated regulation of multiple ion channel and transporter proteins, signaling components, and water transport. Importantly, neurotransmitter stimulated increase in the cytosolic free [Ca2+] ([Ca2+]i) is critical for the regulation of salivary gland secretion as it regulates several major ion fluxes that together establish the sustained osmotic gradient to drive fluid secretion. The mechanisms that act to modulate these increases in [Ca2+]i are therefore central to the process of salivary fluid secretion. Such modulation involves membrane receptors for neurotransmitters, as well as mechanisms that mediate intracellular Ca2+ release, and Ca2+ entry, as well as those that maintain cellular Ca2+ homeostasis. Together, these mechanisms determine the spatial and temporal aspects of the [Ca2+]i signals that regulate fluid secretion. Molecular cloning of these transporters and channels as well as development of mice lacking these proteins has established the physiological significance of key components that are involved in regulating [Ca2+]i in salivary glands. This review will discuss these important studies and the findings which have led to resolution of the Ca2+ signaling mechanisms that determine salivary gland fluid secretion.  相似文献   

6.
The HCO3 secretion mechanism in salivary glands is unclear but is thought to rely on the co-ordinated activity of multiple ion transport proteins including members of the Slc4 family of bicarbonate transporters. Slc4a7 was immunolocalized to the apical membrane of mouse submandibular duct cells. In contrast, Slc4a7 was not detected in acinar cells, and correspondingly, Slc4a7 disruption did not affect fluid secretion in response to cholinergic or β-adrenergic stimulation in the submandibular gland (SMG). Much of the Na +-dependent intracellular pH (pH i) regulation in SMG duct cells was insensitive to 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid, S0859, and to the removal of extracellular HCO 3 . Consistent with these latter observations, the Slc4a7 null mutation had no impact on HCO 3 secretion nor on pH i regulation in duct cells. Taken together, our results revealed that Slc4a7 targets to the apical membrane of mouse SMG duct cells where it contributes little if any to pH i regulation or stimulated HCO 3 secretion.  相似文献   

7.
Calcium‐activated chloride channel (CaCC) plays an important role in modulating epithelial secretion. It has been suggested that in salivary tissues, sustained fluid secretion is dependent on Ca2+ influx that activates ion channels such as CaCC to initiate Cl? efflux. However direct evidence as well as the molecular identity of the Ca2+ channel responsible for activating CaCC in salivary tissues is not yet identified. Here we provide evidence that in human salivary cells, an outward rectifying Cl? current was activated by increasing [Ca2+]i, which was inhibited by the addition of pharmacological agents niflumic acid (NFA), an antagonist of CaCC, or T16Ainh‐A01, a specific TMEM16a inhibitor. Addition of thapsigargin (Tg), that induces store‐depletion and activates TRPC1‐mediated Ca2+ entry, potentiated the Cl? current, which was inhibited by the addition of a non‐specific TRPC channel blocker SKF96365 or removal of external Ca2+. Stimulation with Tg also increased plasma membrane expression of TMEM16a protein, which was also dependent on Ca2+ entry. Importantly, in salivary cells, TRPC1 silencing, but not that of TRPC3, inhibited CaCC especially upon store depletion. Moreover, primary acinar cells isolated from submandibular gland also showed outward rectifying Cl? currents upon increasing [Ca2+]i. These Cl? currents were again potentiated with the addition of Tg, but inhibited in the presence of T16Ainh‐A01. Finally, acinar cells isolated from the submandibular glands of TRPC1 knockout mice showed significant inhibition of the outward Cl? currents without decreasing TMEM16a expression. Together the data suggests that Ca2+ entry via the TRPC1 channels is essential for the activation of CaCC. J. Cell. Physiol. 9999: 2848–2856, 2015. © 2015 Wiley Periodicals, Inc.
  相似文献   

8.
9.
Adenoviruses have been used for gene transfer to salivary gland cells in vivo. Their use to study the function of salivary acinar cells was limited by a severe inflammatory response and by the destruction of fluid-secreting acinar cells. In the present study, low doses of adenovirus were administered to express Stim1-mKO1 by retrograde ductal injection to submandibular glands. The approach succeeded in increasing muscarinic stimulation-induced Ca2+ responses in acinar cells without inflammation or decreased salivary secretions. This increased Ca2+ response was notable upon weak muscarinic stimulation and was attributed to increased Ca2+ release from internal stores and increased Ca2+ entry. The basal Ca2+ level was higher in Stim1-mKO1-expressing cells than in mKO1-expressing and non-expressing cells. Exposure of permeabilized submandibular acinar cells, where Ca2+ concentration was fixed at 50 nM, to inositol 1,4,5-trisphosphate (IP3) produced similar effects on the release of Ca2+ from stores in Stim1-mKO1-expressing and non-expressing cells. The low toxicity and relative specificity to acinar cells of the mild gene transfer method described herein are particularly useful for studying the molecular functions of salivary acinar cells in vivo, and may be applied to increase salivary secretions in experimental animals and human in future.  相似文献   

10.
Background information. AQPs (aquaporins) are water channel proteins that are expressed in almost all living things. In mammalians, 13 members of AQPs (AQP0–12) have been identified so far. AQP5 is known to be expressed mostly in the exocrine cells, including the salivary gland acinar cells. A naturally occurring point mutation (G308A, Gly103 > Asp103) was earlier found in the rat AQP5 gene [Murdiastuti, Purwanti, Karabasil, Li, Yao, Akamatsu, Kanamori and Hosoi (2006) Am. J. Physiol. 291 , G1081–G1088]; in this mutant, the rate of initial saliva secretion under stimulated and unstimulated conditions is less than that for the wt (wild‐type) animals. Results. Here the mutant molecule was characterized in detail. Using the Xenopus oocyte system, we demonstrated the mutant AQP5 to have water permeability almost the same as that of the wt molecule. Mutant and wt AQP5s, tagged with GFP (green fluorescent protein; GFP‐AQP5s) and expressed in polarized MDCK‐II (Madin—Darby canine kidney II) cells, first appeared in the vesicular structure(s) in the cytoplasm, and were translocated to the upper plasma membrane or apical membrane during cultivation, with the mutant GFP‐AQP5 being translocated less efficiently. Thapsigargin and H‐89 both induced translocation in vitro of either molecule, whereas colchicine inhibited this activity; the fraction of cells showing apical localization of mutant GFP‐AQP5 was less than that showing that of the wt molecule under any of the experimental conditions used. In the mutant SMG (submandibular gland) tissue, localization of AQP5 in the apical membrane of acinar cells was extremely reduced. Vesicular structures positive for AQP5 and present in the cytoplasm of the acinar cells were co‐localized with LAMP2 (lysosome‐associated membrane protein 2) or cathepsin D in the mutant gland, whereas such co‐localizations were very rare in the wt gland, suggesting that the mutant molecules largely entered lysosomes for degradation. Conclusion. Replacement of highly conserved hydrophobic Gly103 with strongly hydrophilic Asp103 in rat AQP5, though it did not affect water permeability, may possibly have resulted in less efficient membrane trafficking and increased lysosomal degradation, leading to its lower expression in the apical membrane of the acinar cells in the SMG.  相似文献   

11.
In the last 15 years, remarkable progress has been realized in identifying the genes that encode the ion-transporting proteins involved in exocrine gland function, including salivary glands. Among these proteins, Ca2+-dependent K+ channels take part in key functions including membrane potential regulation, fluid movement and K+ secretion in exocrine glands. Two K+ channels have been identified in exocrine salivary glands: (1) a Ca2+-activated K+ channel of intermediate single channel conductance encoded by the KCNN4 gene, and (2) a voltage- and Ca2+-dependent K+ channel of large single channel conductance encoded by the KCNMA1 gene. This review focuses on the physiological roles of Ca2+-dependent K+ channels in exocrine salivary glands. We also discuss interesting recent findings on the regulation of Ca2+-dependent K+ channels by protein–protein interactions that may significantly impact exocrine gland physiology.  相似文献   

12.
Salivary glands express multiple isoforms of P2X and P2Y nucleotide receptors, but their in vivo physiological roles are unclear. P2 receptor agonists induced salivation in an ex vivo submandibular gland preparation. The nucleotide selectivity sequence of the secretion response was BzATP ≫ ATP > ADP ≫ UTP, and removal of external Ca2+ dramatically suppressed the initial ATP-induced fluid secretion (∼85%). Together, these results suggested that P2X receptors are the major purinergic receptor subfamily involved in the fluid secretion process. Mice with targeted disruption of the P2X7 gene were used to evaluate the role of the P2X7 receptor in nucleotide-evoked fluid secretion. P2X7 receptor protein and BzATP-activated inward cation currents were absent, and importantly, purinergic receptor agonist-stimulated salivation was suppressed by more than 70% in submandibular glands from P2X7-null mice. Consistent with these observations, the ATP-induced increases in [Ca2+]i were nearly abolished in P2X7–/– submandibular acinar and duct cells. ATP appeared to also act through the P2X7 receptor to inhibit muscarinic-induced fluid secretion. These results demonstrate that the ATP-sensitive P2X7 receptor regulates fluid secretion in the mouse submandibular gland.Salivation is a Ca2+-dependent process (1, 2) primarily associated with the neurotransmitters norepinephrine and acetylcholine, release of which stimulates α-adrenergic and muscarinic receptors, respectively. Both types of receptors are coupled to G proteins that activate phospholipase Cβ (PLCβ) during salivary gland stimulation. PLCβ activation cleaves phosphatidylinositol 1,4-bisphosphate resulting in diacylglycerol and inositol 1,4,5-trisphosphate (InsP3) production. Activation of Ca2+-selective InsP3 receptor channels localized to the endoplasmic reticulum of salivary acinar cells increases the intracellular free calcium concentration ([Ca2+]i).4 Depletion of the endoplasmic reticulum Ca2+ pool triggers extracellular Ca2+ influx and a sustained elevation in [Ca2+]i. This increase in [Ca2+]i activates Ca2+-dependent K+ and Cl channels promoting Cl secretion across the apical membrane and a lumen negative, electrochemical gradient that supports Na+ efflux into the lumen. The accumulation of NaCl creates an osmotic gradient which drives water movement into the lumen, thus generating isotonic primary saliva. This primary fluid is then modified by the ductal system, which reabsorbs NaCl and secretes KHCO3 producing a final saliva that is hypotonic (1, 2).Salivation also has a non-cholinergic, non-adrenergic component, the origin of which is unclear (3). In addition to muscarinic and α-adrenergic receptors, salivary acinar cells express other receptors that are coupled to an increase in [Ca2+]i such as purinergic P2 and substance P receptors. Like muscarinic and α-adrenergic receptors, P2 receptor activation leads to a sustained increase in [Ca2+]i in salivary acinar cells (4). In contrast, substance P receptor activation rapidly desensitizes and therefore generates only a relatively transient increase in [Ca2+]i (5) that is unlikely to appreciably contribute to fluid secretion. The purinergic P2 receptor family is comprised of G protein-coupled P2Y and ionotropic P2X receptors activated by extracellular di- and triphosphate nucleotides. Activation of both subfamilies of P2 receptors causes an increase in [Ca2+]i. P2Y receptors increase [Ca2+]i via InsP3-induced Ca2+ mobilization from intracellular stores (similar to α-adrenergic and muscarinic receptors) while P2X receptors act as ligand-gated, non-selective cation channels that mediate extracellular Ca2+ influx (6). Salivary gland tissues express at least four isoforms of P2X (P2X4 and P2X7) and P2Y (P2Y1 and P2Y2) subtypes; however, their in vivo physiological significance has yet to be characterized (711).Our results revealed that ATP acts in isolation to stimulate fluid secretion from the mouse submandibular gland, but secretion is inhibited when ATP is simultaneously presented with a muscarinic receptor agonist. Ablation of the P2X7 gene had no effect on the salivary flow rate evoked by muscarinic receptor activation, but markedly reduced ATP-mediated fluid secretion and rescued the inhibitory effects of ATP on muscarinic receptor activation. Submandibular gland acinar cells from P2X7–/– animals had dramatically impaired ATP-activated Ca2+ signaling, consistent with this being the mechanism responsible for the reduction in ATP-mediated fluid secretion in these mice. Together, these results demonstrated that ATP regulates salivation, acting mainly through the P2X7 receptor. Activation of the P2X7 receptor may play a major role in non-adrenergic, non-cholinergic stimulated fluid secretion.  相似文献   

13.
14.
Coordination of intracellular Ca2+ signaling in parotid acini is crucial for controlling the secretion of primary saliva. Previous work from our lab has demonstrated acidic-organelle Ca2+ release as a participant in agonist-evoked signaling dynamics of the parotid acinar cell. Furthermore, results implicated a potential role for the potent Ca2+ releasing second messenger NAADP in these events. The current study interrogated a direct role of NAADP for Ca2+ signaling in the parotid salivary gland acinar cell. Use of live-cell Ca2+ imaging, patch-clamp methods, and confocal microscopy revealed for the first time NAADP can evoke or enhance Ca2+ dynamics in parotid acini. These results were compared with pancreatic acini, a morphologically similar cell type previously shown to display NAADP-dependent Ca2+ signals. Findings presented here may be relevant in establishing new therapeutic targets for those suffering from xerostomia produced by hypofunctioning salivary glands.  相似文献   

15.
Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca2+ signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca2+ is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca2+] ([Ca2+]i) triggered by IP3-induced release of Ca2+ from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca2+]i signal in the cell. However, Ca2+ entry into the cell is required to sustain the elevation of [Ca2+]i and fluid secretion. This Ca2+ influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca2+ entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca2+ signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca2+ signal can be ascribed to the polarized arrangement of the Ca2+ channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca2+ signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca2+ signals in the regulation of fluid secretion.  相似文献   

16.
Anoctamin-6 (Ano6, TMEM16F) belongs to a family of putative Ca2+-activated Cl channels and operates as membrane phospholipid scramblase. Deletion of Ano6 leads to reduced skeleton size, skeletal deformities, and mineralization defects in mice. However, it remains entirely unclear how a lack of Ano6 leads to a delay in bone mineralization by osteoblasts. The Na+/Ca2+ exchanger NCX1 was found to interact with Ano6 in a two-hybrid split-ubiquitin screen. Using human osteoblasts and osteoblasts from Ano6−/− and WT mice, we demonstrate that NCX1 requires Ano6 to efficiently translocate Ca2+ out of osteoblasts into the calcifying bone matrix. Ca2+-activated anion currents are missing in primary osteoblasts isolated from Ano6 null mice. Our findings demonstrate the importance of NCX1 for bone mineralization and explain why deletion of an ion channel leads to the observed mineralization defect: Ano6 Cl currents are probably required to operate as a Cl bypass channel, thereby compensating net Na+ charge movement by NCX1.  相似文献   

17.
In the resting state, the Ca2+ concentration in agonist-sensitive intracellular stores reflects the balance between active uptake of Ca2+, which is mediated by Ca2+-ATPase (SERCA), and passive leakage of Ca2+. The mechanisms underlying such a leakage in cells of the submaxillary salivary gland were not studied. In our experiments, we examined possible pathways of passive leakage of Ca2+ from the endoplasmic reticulum (ER) of acinar cells obtained from the rat submaxillary salivary gland; direct measurements of the concentration of Ca2+ in the ER ([Ca2+]ER) using a low-affinity calcium-sensitive dye, mag-fura 2/AM, were performed. The cellular membrane was permeabilized with the help of β-escin (40 μg/ml); the Ca2+ concentration in the cytoplasm ([Ca2+] i ) was clamped at its level typical of the resting state (∼100 nM) using an EGTA/Ca2+ buffer. Incubation of permeabilized acinar cells in a calcium-free intracellular milieu, as well as application of thapsigargin, resulted in complete inhibition of the uptake of Ca2+ with the involvement of SERCA. This effect was observed 1 min after the beginning of superfusion of the cells with the corresponding solutions and was accompanied by the leakage of Ca2+ from the ER; this is confirmed by a gradual drop in the [Ca2+]ER. Such a leakage of Ca2+ remained unchanged in the presence of thapsigargin, heparin, and ruthenium red; therefore, it is not mediated by SERCA, inositol 1,4,5-trisphosphate-sensitive receptors (InsP3R), or ryanodine receptors (RyRs). At the same time, an antibiotic, puromycin (0.1 to 1.0 mM), which disconnects polypeptides from the ER-ribosome translocon complex, caused intensification of passive leakage of Ca2+ from the ER. This effect did not depend on the functioning of SERCA, InsP3R, or RyR. Therefore, passive leakage of Ca2+ from the ER in acinar cells of the submaxillary salivary gland is realized through pores of the translocon complex of the ER membrane. Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 339–346, July–August, 2005.  相似文献   

18.
《Cell calcium》2016,59(6):589-597
Isolated clusters of mouse parotid acinar cells in combination with live cell imaging were used to explore the crosstalk in molecular signaling between purinergic, cholinergic and adrenergic pathways that integrate to control fluid and protein secretion. This crosstalk was manifested by (1) β-adrenergic receptor activation and amplification of P2X4R evoked Ca2+ signals, (2) β-adrenergic-induced amplification of P2X7R-evoked Ca2+ signals and (3) muscarinic receptor induced activation of P2X7Rs via exocytotic activity. The findings from our study reveal that purinoceptor-mediated Ca2+ signaling is modulated by crosstalk with canonical signaling pathways in parotid acinar cells. Integration of these signals are likely important for dynamic control of saliva secretion to match physiological demand in the parotid gland.  相似文献   

19.
BackgroundIn this work we studied the effects of the melatonin receptor-antagonist luzindole (1 μM–50 μM) on isolated mouse pancreatic acinar cells.MethodsChanges in intracellular free-Ca2+ concentration, reactive oxygen species production and trypsin secretion were analyzed.ResultsLuzindole induced increases in [Ca2+]i that diminished CCK-8 induced Ca2+ mobilization, compared with that observed when CCK-8 was applied alone. Treatment of cells with thapsigargin (1 μM), in the absence of Ca2+ in the extracellular medium, evoked a transient increase in [Ca2+]i. The additional incubation of cells with luzindole (10 μM) failed to induce further mobilization of Ca2+. In the presence of luzindole a concentration-dependent increase in ROS generation was observed that decreased in the absence of Ca2+ or by pretreatment of cells with melatonin (100 μM). Incubation of pancreatic acinar cells with luzindole (10 μM) impaired CCK-8-induced trypsin secretion. Melatonin was unable to revert the effect of luzindole on CCK-8-induced trypsin secretion.ConclusionThe melatonin receptor-inhibitor luzindole induces Ca2+-mediated pro-oxidative conditions and impairment of enzyme secretion, which creates a situation in pancreatic acinar cells that might compromise their function.General significanceThe effects of luzindole that we have observed, might be unspecific and could mislead the observations when it is used to study the actions of melatonin on the gland. Another possibility is that melatonin receptors exhibit a basal or agonist-independent activity in pancreatic acinar cells, which might be modulated by melatonin or luzindole.  相似文献   

20.
Abstract. The albumen gland of the freshwater pulmonate snail Helisoma duryi produces and secretes the perivitelline fluid, which coats fertilized eggs and provides nutrients to the developing embryos. It is known that perivitelline fluid secretion is stimulated by dopamine through the activation of a dopamine D1‐like receptor, which in turn stimulates cAMP production leading to the secretion of perivitelline fluid. This paper examines the glandular release of perivitelline fluid and provides evidence for the role of Ca2+ in the regulated secretion of perivitelline fluid based on protein secretion experiments and inositol 1,4,5‐trisphosphate assays. Dopamine‐stimulated protein secretion by the albumen gland is reduced in Ca2+‐free medium or in the presence of plasma membrane Ca2+ channel blockers, although the Ca2+ channel subtype involved is unclear. In addition, dopamine‐stimulated protein secretion does not directly involve phospholipase C‐generated signaling pathways and Ca2+ release from intracellular stores. Sarcoplasmic/endoplasmic reticulum Ca2+‐ATPase inhibitors had little effect on protein secretion when applied alone; however, they potentiated dopamine‐stimulated protein secretion. Dantrolene, an inhibitor of ryanodine receptors, 8‐(N,N‐diethylamino)‐octyl‐3,4,5‐trimethoxybenzoate hydrochloride, a nonspecific inhibitor of intracellular Ca2+ channels, and 2‐aminoethyldiphenylborate, an inhibitor of inositol 1,4,5‐trisphosphate receptors, did not suppress protein secretion, suggesting Ca2+ release from internal stores does not directly regulate protein secretion. Thus, the influx of Ca2+ from the extracellular space appears to be the major pathway mediating protein secretion by the albumen gland. The results are discussed with respect to the role of Ca2+ in controlling exocytosis of proteins from the albumen gland secretory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号