首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: To develop and evaluate a novel genotypic test for rapid detection of rifampicin and isoniazid resistance of multidrug-resistant (MDR) Mycobacterium tuberculosis isolates by a multiplex probe array. METHODS AND RESULTS: A multiplex probe array was designed for genotypic test to simultaneously screen the mutations of rpoB, katG, inhA and ahpC genes, associated with rifampin and isoniazid resistance in M. tuberculosis, with a probe detecting one of the recently confirmed genetic markers of isoniazid resistance ahpC-6 and -9 locus added. By using the genotypic test developed, 52 MDR isolates were identified, among which 46 isolates had mutations in rpoB (88.5%) and 45 at codon 315 of katG, regulatory region of inhA and oxyR-ahpC intergenic region (86.5%), whereas all 35 susceptible isolates identified showed a wild-type hybridization pattern. The sensitivity and specificity were 88.5% and 100% for rifampicin resistance, and 86.5% and 100% for isoniazid resistance, respectively. CONCLUSION: A rapid and simultaneous detection of rifampicin and isoniazid resistance caused by the mutations of rpoB, katG, inhA and ahpC genes in M. tuberculosis isolates could be achieved by a multiplex probe array developed. SIGNIFICANCE AND IMPACT OF THE STUDY: This genotypic test protocol has the potential to be developed on clinical application for the rapid detection of drug resistant M. tuberculosis isolates before an efficient chemotherapy is initiated.  相似文献   

2.
Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells. EGFR activation is unconditionally required for induction of motility in corneal epithelial cells, and for induction of a fully motile phenotype in Madin-Darby canine kidney cells. Activation of the EGFR occurs through amphiregulin and heparin-binding epidermal growth factor-like growth factor. Early after HGF stimulation, blocking EGFR activation does not inhibit extracellular-signal regulated kinase 1/2 (ERK1/2) activation by HGF, but the converse is seen after approximately 1 h, indicating the existence of EGFR-dependent and -independent routes of ERK1/2 activation. In summary, HGF induces transactivation of the EGFR in epithelial cells, and this is a prerequisite for induction of full motility.  相似文献   

3.
Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA) in detecting isoniazid (INH) and rifampicin (RIF) resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results.  相似文献   

4.
The frontline tuberculosis drug isoniazid (INH) inhibits InhA, the NADH-dependent fatty acid biosynthesis (FAS-II) enoyl reductase from Mycobacterium tuberculosis (MTB), via formation of a covalent adduct with NAD(+) (the INH-NAD adduct). Resistance to INH can be correlated with many mutations in MTB, some of which are localized in the InhA cofactor binding site. While the InhA mutations cause a substantial decrease in the affinity of InhA for NADH, surprisingly the same mutations result in only a small impact on binding of the INH-NAD adduct. Based on the knowledge that InhA interacts in vivo with other components of the FAS-II pathway, we have initiated experiments to determine whether enzyme inhibition results in structural changes that could affect protein-protein interactions involving InhA and how these ligand-induced conformational changes are modulated in the InhA mutants. Significantly, while NADH binding to wild-type InhA is hyperbolic, the InhA mutants bind the cofactor with positive cooperativity, suggesting that the mutations permit access to a second conformational state of the protein. While cross-linking studies indicate that enzyme inhibition causes dissociation of the InhA tetramer into dimers, analytical ultracentrifugation and size exclusion chromatography reveal that ligand binding causes a conformational change in the protein that prevents cross-linking across one of the dimer-dimer interfaces in the InhA tetramer. Interestingly, a similar ligand-induced conformational change is also observed for the InhA mutants, indicating that the mutations modulate communication between the subunits without affecting the two conformational states of the protein that are present.  相似文献   

5.
Very little is known about the culturability and viability of mycobacteria following their phagocytosis by macrophages. We therefore studied populations of the avirulent 'Academia' strain of Mycobacterium tuberculosis isolated from murine peritoneal macrophage lysates several days post-infection in vivo. The resulting bacterial suspensions contained a range of morphological types including rods, ovoid forms and coccoid forms. Bacterial viability measured using the MPN method (dilution to extinction in liquid medium) was often much higher than that measured by CFU (plating on solid medium). Viability in the MPN assay was further enhanced when the Micrococcus luteus protein, Rpf, was incorporated into the liquid culture medium at picomolar concentrations. Rpf is an example of a family of autocrine growth factors found throughout the high G+C cohort of Gram-positive bacteria including M. tuberculosis. M. tuberculosis cells obtained from macrophages had altered surface properties, as compared with bacteria grown in vitro. This was indicated by loss of the ability to adsorb bacteriophage DS6A, a reduced tendency to form clumps, acquisition of ethidium bromide stainability following heat treatment, and loss of Rpf-mediated resuscitation following freezing and thawing. These results indicate that a proportion of 'unculturable' M. tuberculosis cells obtained from macrophages is either injured or dormant and that these cells may be recovered or resuscitated using Rpf in liquid medium.  相似文献   

6.
The emergence of multidrug resistance (MDR), extensively drug-resistant, and total drug-resistant Mycobacterium tuberculosis (Mtb) strains have hampered the treatment of tuberculosis (TB). Capreomycin and Bedaquiline are currently used for MDR-TB treatment. To understand the impact of these antibiotics on Mtb genes, we have curated the gene expression data where the Mtb cultures were exposed to the Bedaquiline and Capreomycin. Based on the P value cut off (<0.05) and logFC (<−0.5 and >+0.5) values, we have selected the top differentially expressed genes during the antibiotic exposures. We have observed that the top differentially expressed Mtb genes were related to universal stress genes, two-component regulatory systems, and drug efflux pumps. We have curated the Mtb gene datasets and carried out the functional over-representation analysis using the individual gene expression values. We further, constructed the gene interaction networks of antibiotic resistance genes and virulence genes of Mtb to understand the impact of the antibiotics at the molecular level and thus to understand the antimicrobial resistance and virulence patterns. Our study elucidates the impact of antibiotics on the Mtb genes at the molecular level and the positively enriched pathways, operons, and regulons data are helpful in understanding the resistance patterns in Mtb. The upregulated genes during the exposure of Bedaquiline and Capreomycin can be considered as potent drug targets for the development of new anti-TB drugs.  相似文献   

7.
A large fraction of the Mycobacterium tuberculosis genome codes for proteins of unknown function. We here report the structure of one of these proteins, Rv0130, solved to a resolution of 1.8 å. The Rv0130 monomer features a single hotdog fold composed of a highly curved β-sheet on top of a long and a short α-helix. Two monomers in turn pack to form a double-hotdog-folded homodimer, similar to a large group of enzymes that use thiol esters as substrates. Rv0130 was found to contain a highly conserved R-specific hydratase motif buried deeply between the two monomers. Our biochemical studies show that the protein is able to hydrate a short trans-2-enoyl-coenzyme A moiety with a k cat of 1.1 × 102 sec−1. The importance of the side chains of D40 and H45 for hydratase activity is demonstrated by site-directed mutagenesis. In contrast to many hotdog-folded proteins, a proline residue distorts the central helix of Rv0130. This distortion allows the creation of a long, curved tunnel, similar to the substrate-binding channels of long-chain eukaryotic hydratase 2 enzymes.  相似文献   

8.
BACKGROUND: Hepatocyte growth factor (HGF) has multiple biological effects on a wide variety of cells. It modulates intestinal epithelial proliferation and migration, and critically regulates intestinal wound healing. AIMS: To investigate the therapeutic effect of HGF gene transfer, we introduced the HGF gene into the liver of mice with acute colitis. METHODS: The rat HGF expression plasmid vector, pCAGGS-HGF, was injected via the tail vein into C57BL/6 mice, followed by dosing with dextran sulfate sodium in distilled water. Firstly, the HGF gene was injected once on day 0. Secondly, the HGF gene was injected on day 0 and again on day 2. RESULTS: Injection of the HGF gene ameliorated colitis with inhibition of both loss of body weight and shortening of colon length. It protected the colon from epithelial erosions and cellular infiltration. Expression of mRNAs for IFN-gamma, IL18, and TNF-alpha was reduced in the colon. In contrast, expression of mRNA for IL-10 was increased. The numbers of BrdU-positive intestinal epithelial cells were increased, and the numbers of TUNEL-positive apoptotic cells were decreased. Furthermore, a second injection prolonged the elevation of serum HGF levels, and ameliorated the symptoms better than a single injection. The empty pCAGGS plasmid did not ameliorate acute colitis. CONCLUSIONS: HGF gene transfer attenuated acute colitis by facilitating intestinal wound repair as well as inhibiting inflammation, suggesting a new strategy for treatment of IBD.  相似文献   

9.
This study investigated the hypothesis that serum antibodies against Mycobacterium tuberculosis present in naturally infected healthy subjects of a tuberculosis (TB) endemic area could create and/or sustain the latent form of infection. All five apparently healthy Indian donors showed high titres of serum antibodies against M. tuberculosis cell membrane antigens, including lipoarabinomannan and alpha crystallin. Uptake and killing of bacilli by the donor macrophages was significantly enhanced following their opsonization with antibody-rich, heat-inactivated autologous sera. However, the capability to opsonize was apparent for antibodies against some and not other antigens. High-content cell imaging of infected macrophages revealed significantly enhanced colocalization of the phagosome maturation marker LAMP-1, though not of calmodulin, with antibody-opsonized compared with unopsonized M. tuberculosis. Key enablers of macrophage microbicidal action—proinflammatory cytokines (IFN-γ and IL-6), phagosome acidification, inducible NO synthase and nitric oxide—were also significantly enhanced following antibody opsonization. Interestingly, heat-killed M. tuberculosis also elevated these mediators to the levels comparable to, if not higher than, opsonized M. tuberculosis. Results of the study support the emerging view that an efficacious vaccine against TB should, apart from targeting cell-mediated immunity, also generate ‘protective’ antibodies.  相似文献   

10.
Tuberculosis (TB) treatment is plagued by liver damage, which often leads to treatment interruptions. Circular RNAs (circRNAs) are a special class of non‐coding RNAs abundant in body fluids with important biological functions. However, the role of circRNA in anti‐tuberculosis drug‐induced liver injury (ADLI) is unclear. We explored ADLI‐specific circRNAs in TB patients using circRNA microarrays and verified circMARS in a cohort of 300 individuals. In addition to the value assessment of circMARS in patients using a receiver operating characteristic (ROC) curve, cell experiments were also performed under the guidance of bioinformatics analyses. In particular, we found that circMARS acts as a miRNA sponge by binding to miRNAs. Compared with the blank group, the expressions of circMARS, KMT2C gene, and EGFR protein in the ADLI group were increased, while miR‐6808‐5p, miR‐6874‐3p, and miR‐3157‐5p were decreased. Furthermore, when si‐circMARS was used in the ADLI groups, circMARS demotion manifested the opposite results. Subsequently, a self‐controlled cohort of 35 participants was used to verify the circMARS–miR‐6808‐5p/‐6874‐3p/‐3157‐5p–KMT2C–EGFR function axis. Therefore, circMARS may participate in the compensatory repair mechanism of ADLI through the function axis, and may be a potential biomarker for ADLI diagnosis in TB patients.  相似文献   

11.
The rise of multidrug-resistant and totally drug-resistant tuberculosis and the association with an increasing number of HIV-positive patients developing tuberculosis emphasize the necessity to find new antitubercular targets and drugs. The antigen 85 (Ag85) complex from Mycobacterium tuberculosis plays important roles in the biosynthesis of major components of the mycobacterial cell envelope. For this reason, Ag85 has emerged as an attractive drug target. Recently, ebselen was identified as an effective inhibitor of the Ag85 complex through covalent modification of a cysteine residue proximal to the Ag85 active site and is therefore a covalent, allosteric inhibitor. To expand the understanding of this process, we have solved the x-ray crystal structures of Ag85C covalently modified with ebselen and other thiol-reactive compounds, p-chloromercuribenzoic acid and iodoacetamide, as well as the structure of a cysteine to glycine mutant. All four structures confirm that chemical modification or mutation at this particular cysteine residue leads to the disruption of the active site hydrogen-bonded network essential for Ag85 catalysis. We also describe x-ray crystal structures of Ag85C single mutants within the catalytic triad and show that a mutation of any one of these three residues promotes the same conformational change observed in the cysteine-modified forms. These results provide evidence for active site dynamics that may afford new strategies for the development of selective and potent Ag85 inhibitors.  相似文献   

12.
The growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor MET, the tyrosine kinase encoded by the c-MET proto-oncogene, exert major roles in cancer invasion and metastasis and are key targets for therapy. NK1 is an alternative spliced variant of HGF/SF that consists of the N-terminal (N) and first kringle (K1) domains and has partial agonistic activity. NK1 crystallises as a head-to-tail dimer with an extensive inter-protomeric interface resulting from contacts between the two short interdomain linkers and reciprocal contacts between the N and K1 domains. Here we show that a subset of mutants at the NK1 dimer interface, such as the linker mutants Y124A or N127A or the kringle mutant V140A:I142A, bind the MET receptor with affinities comparable to wild-type NK1 but fail to assemble a dimeric, signalling competent NK1-MET complex. These NK1 variants have no detectable agonistic activity on, behave as bona fide receptor antagonists by blocking cell migration and DNA synthesis in target cells and have strong prospects as therapeutics for human cancer.  相似文献   

13.
PonA2 is one of the two class A penicillin binding proteins of Mycobacterium tuberculosis, the etiologic agent of tuberculosis. It plays a complex role in mycobacterial physiology and is spotted as a promising target for inhibitors. PonA2 is involved in adaptation of M. tuberculosis to dormancy, an ability which has been attributed to the presence in its sequence of a C‐terminal PASTA domain. Since PASTA modules are typically considered as β‐lactam antibiotic binding domains, we determined the solution structure of the PASTA domain from PonA2 and analyzed its binding properties versus a plethora of potential binders, including the β‐lactam antibiotics, two typical muropeptide mimics, and polymeric peptidoglycan. We show that, despite a high structural similarity with other PASTA domains, the PASTA domain of PonA2 displays different binding properties, as it is not able to bind muropeptides, or β‐lactams, or polymeric peptidoglycan. These results indicate that the role of PASTA domains cannot be generalized, as their specific binding properties strongly depend on surface residues, which are widely variable. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 712–719, 2014.  相似文献   

14.
Soil-transmitted nematodes infect over a billion people and place several billion more at risk of infection. Hookworm disease is the most significant of these soil-transmitted nematodes, with over 500?million people infected. Hookworm infection can result in debilitating and sometimes fatal iron-deficiency anemia, which is particularly devastating in children and pregnant women. Currently, hookworms and other soil-transmitted nematodes are controlled by administration of a single dose of a benzimidazole to targeted populations in endemic areas. While effective, people are quickly re-infected, necessitating frequent treatment. Widespread exposure to anthelmintic drugs can place significant selective pressure on parasitic nematodes to generate resistance, which has severely compromised benzimidazole anthelmintics for control of livestock nematodes in many areas of the world. Here we report, to our knowledge, the first naturally occurring multidrug-resistant strain of the canine hookworm Ancylostoma caninum. We reveal that this isolate is resistant to fenbendazole at the clinical dosage of 50?mg/kg for 3?days. Our data shows that this strain harbors a fixed, single base pair mutation at amino acid 167 of the β-tubulin isotype 1 gene, and by using CRISPR/Cas9 we demonstrate that introduction of this mutation into the corresponding amino acid in the orthologous β-tubulin gene of Caenorhabditis elegans confers a similar level of resistance to thiabendazole. We also show that the isolate is resistant to the macrocyclic lactone anthelmintic ivermectin. Understanding the mechanism of anthelmintic resistance is important for rational design of control strategies to maintain the usefulness of current drugs, and to monitor the emergence of resistance. The isolate we describe represents the first multidrug-resistant strain of A. caninum reported, and our data reveal a resistance marker that can emerge naturally in response to heavy anthelminthic treatment.  相似文献   

15.
目的 探讨从化合物库中高通量筛选得到的、可有效抑制结核分枝杆菌生长和繁殖的新型活性化合物S28 的作用机制及其可能的作用靶点。方法 采用双向电泳技术, 比较分析活性化合物作用于结核分枝杆菌H37Ra 前、后的全细胞蛋白表达差异。结果 13 个蛋白质斑点表达下调, 对其中6 个改变明显的蛋白质斑点进行基质辅助激光解吸/ 电离飞行时间质谱分析, 成功测定2 个蛋白质斑点。数据库检索分析确定这2 个差异蛋白点分别为延长因子Tu 和短链脱氢酶, 是参与蛋白质翻译和氧化呼吸、能量代谢等生理过程的重要蛋白。结论 为 进一步深入探索新型抗结核活性化合物的作用机制和可能的靶点提供研究基础和方向。  相似文献   

16.
The hepatocyte growth factor (HGF)/Met signalling pathway is up‐regulated in many cancers, with downstream mediators playing a role in DNA double strand break repair. Previous studies have shown increased radiosensitization of tumours through modulation of Met signalling by genetic methods. We investigated the effects of the anti‐HGF monoclonal antibody, AMG102, on the response to ionizing radiation in a model of glioblastoma multiforme in vitro and in vivo. Radiosensitivity was evaluated in vitro in the U‐87 MG human glioma cell line. Met activation was measured by Western blot, and the effect on survival following radiation was evaluated by clonogenic assay. Mechanism of cell death was evaluated by apoptosis and mitotic catastrophe assays. DNA damage was quantitated by γH2AX foci and neutral comet assay. Growth kinetics of subcutaneous tumours was used to assess the effects of AMG102 on in vivo tumour radiosensitivity. AMG102 inhibited Met activation after irradiation. An enhancement of radiation cell killing was shown with no toxicity using drug alone. Retention of γH2AX foci at 6 and 24 hrs following the drug/radiation combination indicated an inhibition of DNA repair following radiation, and comet assay confirmed DNA damage persisting over the same duration. At 48 and 72 hrs following radiation, a significant increase of cells undergoing mitotic catastrophe was seen in the drug/radiation treated cells. Growth of subcutaneous tumours was slowed in combination treated mice, with an effect that was greater than additive for each modality individually. Modulation of Met signalling with AMG102 may prove a novel radiation sensitizing strategy. Our data indicate that DNA repair processes downstream of Met are impaired leading to increased cell death through mitotic catastrophe.  相似文献   

17.
The recommended treatment for latent tuberculosis (TB) infection in adults is a daily dose of isoniazid (INH) 300 mg for six months. In Brazil, INH was formulated as 100 mg tablets. The treatment duration and the high pill burden compromised patient adherence to the treatment. The Brazilian National Programme for Tuberculosis requested a new 300 mg INH formulation. The aim of our study was to compare the bioavailability of the new INH 300 mg formulation and three 100 mg tablets of the reference formulation. We conducted a randomised, single dose, open label, two-phase crossover bioequivalence study in 28 healthy human volunteers. The 90% confidence interval for the INH maximum concentration of drug observed in plasma and area under the plasma concentration vs. time curve from time zero to the last measurable concentration “time t” was 89.61-115.92 and 94.82-119.44, respectively. The main limitation of our study was that neither adherence nor the safety profile of multiple doses was evaluated. To determine the level of INH in human plasma, we developed and validated a sensitive, simple and rapid high-performance liquid chromatography-tandem mass spectrometry method. Our results showed that the new formulation was bioequivalent to the 100 mg reference product. This finding supports the use of a single 300 mg tablet daily strategy to treat latent TB. This new formulation may increase patients’ adherence to the treatment and quality of life.  相似文献   

18.
Hepatocyte growth factor/scatter factor (HGF/SF), the ligand for the receptor tyrosine kinase encoded by the c-Met proto-oncogene, is a multidomain protein structurally related to the pro-enzyme plasminogen and with major roles in development, tissue regeneration and cancer. We have expressed the N-terminal (N) domain, the four kringle domains (K1 to K4) and the serine proteinase homology domain (SP) of HGF/SF individually in yeast or mammalian cells and studied their ability to: (i) bind the Met receptor as well as heparan sulphate and dermatan sulphate co-receptors, (ii) activate Met in target cells and, (iii) map their binding sites onto the beta-propeller domain of Met. The N, K1 and SP domains bound Met directly with comparable affinities (K(d)=2.4, 3.3 and 1.4 microM). The same domains also bound heparin with decreasing affinities (N>K1>SP) but only the N domain bound dermatan sulphate. Three kringle domains (K1, K2 and K4) displayed agonistic activity on target cells. In contrast, the N and SP domains, although capable of Met binding, displayed no or little activity. Further, cross-linking experiments demonstrated that both the N domain and kringles 1-2 bind the beta-chain moiety (amino acid residues 308-514) of the Met beta-propeller. In summary, the K1, K2 and K4 domains of HGF/SF are sufficient for Met activation, whereas the N and SP domains are not, although the latter domains contribute additional binding sites necessary for receptor activation by full length HGF/SF. The results provide new insights into the structure/function of HGF/SF and a basis for engineering the N and K1 domains as receptor antagonists for cancer therapy.  相似文献   

19.
20.
The single crystal X-ray structure of the extracellular portion of the L,D-transpeptidase (ex-LdtMt2 – residues 120–408) enzyme was recently reported. It was observed that imipenem and meropenem inhibit activity of this enzyme, responsible for generating L,D-transpeptide linkages in the peptidoglycan layer of Mycobacterium tuberculosis. Imipenem is more active and isothermal titration calorimetry experiments revealed that meropenem is subjected to an entropy penalty upon binding to the enzyme. Herein, we report a molecular modeling approach to obtain a molecular view of the inhibitor/enzyme interactions. The average binding free energies for nine commercially available inhibitors were calculated using MM/GBSA and Solvation Interaction Energy (SIE) approaches and the calculated energies corresponded well with the available experimentally observed results. The method reproduces the same order of binding energies as experimentally observed for imipenem and meropenem. We have also demonstrated that SIE is a reasonably accurate and cost-effective free energy method, which can be used to predict carbapenem affinities for this enzyme. A theoretical explanation was offered for the experimental entropy penalty observed for meropenem, creating optimism that this computational model can serve as a potential computational model for other researchers in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号