首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the aid of next-generation sequencing technology, pseudogenes have been widely recognized as functional regulators in the development and progression of certain diseases, especially cancer. Our present study aimed to investigate the functions and molecular mechanisms of HSPB1-associated protein 1 pseudogene 1 (HSPB1P1) in renal cell carcinoma (RCC). HSPB1P1 expression at the mRNA levels was determined by quantitative real-time polymerase chain reaction, and its clinical significance was assessed. Cell viability was detected by Cell Counting Kit-8 assay. Cell migration and invasion were detected by transwell assays. The location of HSPB1P1 in RCC cells was detected by subcellular distribution analysis. The direct relationship between HSPB1P1 and miR-296-5p/HMGA1 axis was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Our results identify the elevated expression of HSPB1P1 in RCC tissues and cell lines, which predicted advanced progression and poor prognosis in patients with RCC. Knockdown of HSPB1P1 suppressed cell proliferation, migration, and invasion, and reversed epithelial–mesenchymal transition process in RCC. HSPB1P1 was mostly enriched in the cytoplasm and functioned as a miRNA sponge for miR-296-5p and then regulated high-mobility group A1 expression. In conclusion, our study indicated that HSPB1P1 contributed to RCC progression by targeting the miR-296-5p/HMGA1 axis, and should be considered as a promising biomarker and therapeutic target for clinical applications.  相似文献   

2.
《Reproductive biology》2023,23(1):100704
Circular RNAs (circRNAs) have been reported to be implicated in the tumorigenesis and progression of ovarian cancer. Here, the study was designed to explore the activity of human circ_0021573 in ovarian cancer pathogenesis and its regulation through the competing endogenous RNA (ceRNA) crosstalk. Circ_0021573, microRNA (miR)? 936, and cullin 4B (CUL4B) were quantified by qRT-PCR and western blot. Cell proliferation ability was detected by XTT, 5-Ethynyl-2′-Deoxyuridine (EdU), and colony formation assays. Cell apoptosis, migration, and invasion were assessed by flow cytometry, wound-healing, and transwell assays, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to evaluate the direct relationship between miR-936 and circ_0021573 or CUL4B 3′UTR. Xenograft studies were applied to assess the role of circ_0021573 in tumor growth. Our data showed that circ_0021573 expression is enhanced in human ovarian cancer. Inhibition of circ_0021573 impedes cell proliferation, migration, and invasion and promotes apoptosis in vitro, as well as diminishes tumor growth in vivo. Mechanistically, circ_0021573 contains a miR-936 binding site, and miR-936 is a relevant mediator of circ_0021573 regulation. MiR-936 direct targets and inhibits CUL4B. MiR-936-mediated suppression of CUL4B hinders cell proliferation, migration, and invasion and accelerates apoptosis in vitro.. These data suggested that circ_0021573 might promote the malignant phenotypes of ovarian cancer cells by functioning as a ceRNA for miR-936 to induce CUL4B, which provided a promising target for the prevention and inhibition of ovarian cancer.  相似文献   

3.
Breast cancer is a kind of malignant tumor that severely threatens women's lives and health worldwide. Tumor-associated macrophages (TAMs) have been reported to mediate tumor progression, while the mechanism still needs further identification. In this study, we found that M2 macrophages promoted increased cell proliferation and migration as well as reduced expression of interferon regulatory factor 7 (IRF7) and increased the expression of miR-1587 in breast cancer cells. Overexpression of IRF7 or miR-1587 knockdown reversed M2 macrophage-induced cell proliferation and migration as well as tumor growth in vivo. Mechanistically, miR-1587 targeted the 3ʹ-untranslated region (3ʹ-UTR) of IRF7 mRNA to regulate its protein expression leading to tumor progression. Collectively, this study revealed that the miR-1587/IRF7 axis mediates M2 macrophage-induced breast cancer progression, and this sheds light on further clinical therapy for breast cancer by targeting TAMs as well as the miR-1587/IRF7 axis.  相似文献   

4.
The long noncoding RNA cancer susceptibility 9 (CASC9) has been reported to be a pivot modulator in growth and metastasis of breast cancer, liver cancer, esophageal squamous cell carcinoma, lung adenocarcinoma, gastric cancer, and nasopharyngeal cancer. However, its potential roles in ovarian cancer remain unclear. In this study, we aimed at its functions and molecular mechanism in ovarian cancer progression. We showed that CASC9 was highly expressed in ovarian cancer tissues and cell lines. An elevated level of CASC9 predicts an unfavorable prognosis in patients with ovarian cancer. Loss-of-function and gain-of-function assays illustrated that CASC9 promotes ovarian cancer cell proliferation, migration, and invasion in vitro, and accelerates tumor growth in vivo. We showed that CASC9 works as a competing endogenous RNA (ceRNA) for miR-758-3p which targets LIN7A. CASC9 inhibits the level of miR-758-3p, and in turn stimulates LIN7A expression in ovarian cancer. Overexpression of LIN7A reverses the suppressive roles of CASC9 depletion on ovarian cancer. In sum, our findings reveal a novel undefined regulatory signaling pathway, namely CASC9/miR-758-3p/LIN7A axis, involved in ovarian cancer progression.  相似文献   

5.
Osteosarcoma (OS) is the most common primary malignant bone tumor. Recently, increasing evidence has shown that the long noncoding RNA (lncRNA) DLX6-AS1 (distal-less homeobox 6 antisense 1) plays significant roles in various types of cancers. However, the functions and underlying mechanisms of DLX6-AS1 have not been explored in OS yet. In this study, we assessed the expression of DLX6-AS1 in OS tissues and cell lines and explored the underlying molecular mechanisms. DLX6-AS1 was found to be significantly upregulated in OS tissues and OS cell lines. High expression of DLX6-AS1 was significantly correlated with advanced TNM stage, high tumor grade, and distant metastasis of patients with OS. Knockdown of DLX6-AS1 suppressed OS cell proliferation, invasion, and migration, and induced cell apoptosis. Knockdown of DLX6-AS1 also suppressed in vivo tumor growth. Bioinformatics and luciferase assay analysis showed that DLX6-AS1 functioned as a competing endogenous RNA (ceRNA) to negatively regulate miR-641 expression. Furthermore, miR-641 was found to target the 3′ untranslated region of homeobox protein Hox-A9 (HOXA9) and suppressed the expression of HOXA9. Mechanistic studies showed that DLX6-AS1 regulated OS cell proliferation, invasion, and migration via regulating HOXA9 by acting as a ceRNA for miR-641. Our results suggested that DLX6-AS1 functions as a ceRNA by targeting miR-641/HOXA9 signal pathway to suppress OS cell proliferation and metastasis. Our study may provide novel insights into understanding pathogenesis and development of OS.  相似文献   

6.
Small nucleolar RNA host gene 12 (SNHG12) has been indicated in the tumorigenesis of various human cancers, including clear cell renal cell carcinoma (ccRCC). However, the underlying mechanisms of SNHG12 driving progression of ccRCC remain incompletely understood. In the present study, we discovered that SNHG12 is up-regulated in ccRCC and that overexpression of SNHG12 predicted poor clinical outcome of ccRCC patients. SNHG12 knockdown notably inhibited proliferation and migration of RCC cells. Furthermore, we discovered that miR-30a-3p, a putative ccRCC inhibitor, was competitively sponged by SNHG12. Via the crosstalk network, SNHG12 was capable of up-regulating multiple target genes of miR-30a-3p, namely, RUNX2, WNT2 and IGF-1R, which have been identified to facilitate tumorigenesis of ccRCC. Taken together, our present study suggested a novel ceRNA network, in which SNHG12 could promote the malignancy of ccRCC although competitively binding with miR-30a-3p and consequently release the expression of its downstream cancer-related genes.  相似文献   

7.
8.
Long intergenic non-coding RNA 00152 (LINC00152) is aberrantly expressed in various human malignancies and plays an important role in the pathogenesis. Here, we found that LINC00152 is upregulated in hepatocellular carcinoma (HCC) tissues as compared to adjacent non-neoplastic tissues; gain-and-loss-of-function analyses in vitro showed that LINC00152 facilitates HCC cell cycle progression through regulating the expression of CCND1. LINC00152 knockdown inhibits tumorigenesis in vivo. MS2-RIP analysis indicated that LINC00152 binds directly to miR-193a/b-3p, as confirmed by luciferase reporter assays. Furthermore, ectopic expression of LINC00152 partially halted the decrease in CCND1 expression and cell proliferation capacity induced by miR-193a/b-3p overexpression. Thus, LINC00152 acts as a competing endogenous RNA (ceRNA) by sponging miR-193a/b-3p to modulate its target gene, CCND1. Our findings establish a ceRNA mechanism regulating cell proliferation in HCC via the LINC00152/miR-193a/b-3p/CCND1 signalling axis, and identify LINC00152 as a potential therapeutic target for HCC.  相似文献   

9.
Immune escape of renal cell carcinoma (RCC) impacts patient survival. However, the molecular mechanism of long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in RCC immune escape remains unclear. Quantitative real-time PCR and western blotting results revealed that the expression of lncRNA SNHG1 and STAT3 were upregulated in RCC tissues and cells and that the expression of miR-129-3p was downregulated. Enzyme-linked immunosorbent assay results revealed the increased levels of immune-related factors (interferon-γ, tumour necrosis factor α, and interleukin-2) in RCC tissues. SNHG1 knockdown or miR-129-3p overexpression inhibited the proliferation and invasion of A498 and 786-O cells, while the proliferation and cytotoxicity of CD8+ T cells increased, which promoted the secretion of immune-related factors. STAT3 overexpression decreased the protective effect of miR-129-3p overexpression on RCC cell immune escape. In addition, miR-129-3p knockdown and STAT3 overexpression decreased the protective effect of lncRNA SNHG1 knockdown on RCC cell immune escape. In addition, PD-L1 expression was downregulated after lncRNA SNHG1 knockdown but upregulated after miR-129-3p knockdown and STAT3 overexpression. Dual-luciferase assays showed that lncRNA SNHG1 targets miR-129-3p, and miR-129-3p targets STAT3. RNA pull-down and RNA immunoprecipitation assays verified the regulatory relationship between SNHG1 and STAT3. In vivo, shSNHG1 prolonged the overall survival of RCC tumour model mice and inhibited RCC tumour growth and immune escape but increased CD8+ T cell infiltration in mice. Our findings provide an experimental basis for elucidating the molecular mechanisms of immune escape by RCC and reveal a novel target to treat this disease.  相似文献   

10.
Increasing evidence suggests that circular RNAs are emerging biomarkers or targets for early cancer diagnosis and treatment. However, the studies of circular RNA in osteosarcoma (OS) are limited. In this study we found that circ_ARF3 were highly expressed in osteosarcoma cell lines and tumor tissues. Knocking down circ_ARF3 greatly ceased OS cell growth, impaired cell colony formation and halted cell cycle transition from G1 to S phase. Bioinformatic analysis suggested that miR-1299 is the target of circ_ARF3. Luciferase assay and biotin labeled circ_ARF3 pull down assay confirmed their interactions in OS cells. The regulatory roles of circ_ARF3 on miR-1299 was also investigated. Further bioinformatic analysis showed that CDK6 is the target of miR-1299. Overexpressing miR-1299 in OS cells decreased CDK6 expression and arrested OS cell growth and cell cycle progression. However, the roles of miR-1299 in regulating CDK6 expression, OS cell growth and cell cycle progression were greatly impaired in the presence of circ_ARF3. In general, our study demonstrated that in the OS, highly expressed circ_ARF3 acts as a sponge of miR-1299 to inhibit miR-1299 mediated CDK6 downregulation which further promoted OS pathogenesis. circ_ARF3 could be a potential target for OS treatment in the future.  相似文献   

11.
12.
13.
Autophagy is a kind of intracellular degradation pathway which could be regulated by many noncoding RNAs. ciRS-7, also called CDR1as, is a circular RNA that is relatively well studied at present. In our recent study, we have found that the expression of ciRS-7 is abnormally increased in the esophageal squamous cell carcinoma (ESCC), and may function as an oncogene to accelerate ESCC progression through sponging miR-876-5p. Meanwhile, another study showed that ciRS-7 is highly expressed in the triple-negative breast cancer (TNBC) and may function as a competing endogenous RNA of miR-1299 to maintain the high migration and invasive capacity of TNBC cells. Of interest, in the present work, we observed that ciRS-7 could inhibit starvation or rapamycin-induced autophagy of ESCC cells and miR-1299 promotes starvation or rapamycin-induced autophagy of ESCC cells. Mechanically, miR-1299 could directly bind to the 3′-untranslated region of epidermal growth factor receptor (EGFR) and then affects its downstream Akt-mTOR pathway in ESCC cells. Consistent with our past findings, ciRS-7 could also sponge miR-1299 in ESCC cells. Taken together, this study has shed light on that circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling.  相似文献   

14.
Long non-coding RNAs (lncRNA) have an extensive role in the progression and chemoresistance of gastric cancer (GC). Deeply study the regulatory role of lncRNAs could provide potential therapeutic targets. The aim of this study is to explore the regulatory role of HOTAIR in the progression and oxaliplatin resistance of GC. The expression of HOTAIR in GC and cell lines were detected by using qRT-PCR. Cell proliferation and apoptosis were analysed by CCK-8, EdU incorporation and flow cytometry. Luciferase reporter assay was used to identify the interaction between HOTAIR and ABCG2 (ATP-binding cassette (ABC) superfamily G member 2, ABCG2) via miR-195-5p. The regulatory functions were verified by using molecular biology experiments. HOTAIR was significantly overexpressed in GC and associated with poor prognosis. Knock-down of HOTAIR inhibited the GC cells proliferation and oxaliplatin resistance, while overexpression of HOTAIR showed opposite functions. Further studies found that HOTAIR acted as a competing endogenous RNA (ceRNA) to absorb miR-195-5p and elevated the expression of ABCG2, which leads to resistance of GC cells to oxaliplatin. Taken together, our findings demonstrated that HOTAIR regulates ABCG2 induced resistance of GC to oxaliplatin through miR-195-5p signalling and illustrate the great potential of developing new therapeutic targets for GC patients.  相似文献   

15.
Long noncoding RNA HOTTIP is a crucial regulator in multiple types of cancer, including ovarian cancer (OC). However, the biological roles and underlying mechanisms of HOTTIP in OC have rarely been studied. Hence, this study aimed to investigate the functional correlation between HOTTIP and pyroptosis in OC progression. The expression of HOTTIP in OC tissues and cell lines was characterized by quantitative real-time PCR. Cell proliferation was evaluated using Cell Counting Kit-8 and clone formation assays. Western blot was performed to quantify protein levels. A dual-luciferase reporter assay was used to analyze the molecular interaction among HOTTIP, miR-148a-3p, and AKT2. The expression of HOTTIP was significantly upregulated in OC tissue samples and cell lines. The silencing of HOTTIP led to the inhibition of cell proliferation and NLRP1 inflammasome-mediated pyroptosis. In addition, HOTTIP increased AKT2 expression by negatively regulating miR-148a-3p and then inhibited ASK1/JNK signaling. Further rescue experiments revealed that downregulation of miR-148a-3p and overexpression of AKT2 obviously diminished the effects of HOTTIP downregulation in OC cells. Thus, our study elucidated a novel pyroptosis-related mechanism by which HOTTIP participated in OC progression, which might provide a theoretical reference for clinical treatment.  相似文献   

16.
Competing endogenous RNAs (ceRNAs) are a newly discovered class of molecular regulators involved in many diseases, especially tumors. Therefore, exploration of the potential ceRNA regulatory network regarding the occurrence and development of pancreatic cancer will provide a new theoretical basis for its diagnosis and treatment. Based on the above background, we applied a bioinformatics approach to mine the public database The Cancer Genome Atlas (TCGA) and performed a series of subsequent molecular biology assays to confirm the hypothesis that HOXA10-AS/ miR-340-3p/HTR1D axis could modulate the malignant progression of pancreatic cancer. Here, our present study demonstrated that the expression level of HTR1D, positively correlated with the level of lncRNA HOXA10-AS and negatively associated with the level of miR-340-3p, was significantly increased in pancreatic cancer cell lines (PCs) compared with that in normal HPDE6-C7 cells. Knocking down HTR1D obviously inhibited the proliferation and migration of PCs and promoted apoptosis by upregulating p-AKT. Elevated miR-340-3p blocked the progression of pancreatic cancer by downregulating HTR1D. Lessened level of lncRNA HOXA10-AS reduced the sponging of miR-340-3p, resulting in an increase of miR-340-3p and a subsequent decrease of HTR1D to ultimately suppress the malignant biological behaviors of cancer. These data illustrated that the HOXA10-AS/miR-340-3p/HTR1D ceRNA axis acted a crucial part in the malignant biological behavior of pancreatic cancer in an AKT-dependent manner.  相似文献   

17.
18.
Colorectal cancer (CRC), is mostly derived from normal colon epithelial cells, and has been reported to be one of most common gastrointestinal malignancies globally. An increasing number of researchers have claimed that long noncoding RNAs (lncRNAs) exert significant functions in tumor progression. Nevertheless, the function of MAGI2-AS3 remains uncertain in CRC. The expression of MAGI2-AS3, miR-3163, and transmembrane protein 106B (TMEM106B) messenger RNA was examined by quantitative real-time polymerase chain reaction. Cell apoptosis was measured by caspase-3 activity test. Cell proliferation was tested by cell-counting kit 8 and 5-ethynyl-2′-deoxyuridine assays. Cell migration was detected by transwell assay. Western blot analysis examined the protein expression of TMEM106B. The expression of Ki-67 was evaluated by immunohistochemistry assay. The binding capacity between miR-3163 and MAGI2-AS3 (or TMEM106B) was studied by radioimmunoprecipitation and luciferase reporter assays. The expression of MAGI2-AS3 and TMEM106B was conspicuously upregulated whereas miR-3163 presented lower expression in CRC cells. MAGI2-AS3 deficiency facilitated cell apoptosis but hampered cell proliferation and migration. MAGI2-AS3 combined with miR-3163 and negatively regulated miR-3163 expression. In addition, the administration of sh-MAGI2-AS3 or miR-3163 mimics suppressed CRC cell growth in vivo. Subsequently, miR-3163 targeted TMEM106B and the transfection of sh-MAGI2-AS3 or miR-3163 mimics downregulated TMEM106B expression. Rescue assays verified that TMEM106B overexpression recovered the effects of MAGI2-AS3 inhibition on cell apoptosis, proliferation, and migration in CRC. MAGI2-AS3 drives CRC progression through regulating miR-3163/TMEM106B axis. This supplies innovative insights on the investigation of molecular mechanism in CRC progression.  相似文献   

19.
Circular RNAs (circRNAs) can participate in multiple cancers, including breast cancer. Increasing circRNAs are recognized in various cancers because of the high-throughput sequencing. However, the potential physiological effect of hsa_circ_0136666 in breast cancer progression is unknown. In our study, the biological role of hsa_circ_0136666 in breast cancer development was studied. It was displayed that hsa_circ_0136666 was greatly increased in breast cancer. In addition, overexpression of hsa_circ_0136666 was able to promote Michigan Cancer Foundation-7 (MCF7) and BT474 cell proliferation and triggered cell cycle in G2/M phase. microRNA plays critical role in tumor development and they can act as direct targets of circRNAs. miR-1299 has been implicated as a famous tumor suppressor in many cancers. Here, miR-1299 was predicted as the target of hsa_circ_0136666. Meanwhile, its Upregulation repressed breast cancer proliferation, migration and invasion capacity, which could be reversed by the increase of hsa_circ_0136666. Furthermore, Cyclin-dependent kinase 6 (CDK6) was speculated as the downstream target of miR-1299. In MCF7 and BT474 cells, CDK6 was greatly overexpressed and it was shown that CDK6 contributed a lot to breast cancer progression. Subsequently, it was implied that hsa_circ_0136666 could modulate CDK6 levels positively in vitro. In conclusion, it was revealed that Upregulation of hsa_circ_0136666 promoted breast cancer progression by sponging miR-1299 and targeting CDK6.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号