首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although macrophage migration inhibitory factor (MIF) is known to have antioxidant property, the role of MIF in cardiac fibrosis has not been well understood. We found that MIF was markedly increased in angiotension II (Ang-II)-infused mouse myocardium. Myocardial function was impaired and cardiac fibrosis was aggravated in Mif-knockout (Mif-KO) mice. Functionally, overexpression of MIF and MIF protein could inhibit the expression of fibrosis-associated collagen (Col) 1a1, COL3A1 and α-SMA, and Smad3 activation in mouse cardiac fibroblasts (CFs). Consistently, MIF deficiency could exacerbate the expression of COL1A1, COL3A1 and α-SMA, and Smad3 activation in Ang-II-treated CFs. Interestingly, microRNA-29b-3p (miR-29b-3p) and microRNA-29c-3p (miR-29c-3p) were down-regulated in the myocardium of Ang-II-infused Mif-KO mice but upregulated in CFs with MIF overexpression or by treatment with MIF protein. MiR-29b-3p and miR-29c-3p could suppress the expression of COL1A1, COL3A1 and α-SMA in CFs through targeting the pro-fibrosis genes of transforming growth factor beta-2 (Tgfb2) and matrix metallopeptidase 2 (Mmp2). We further demonstrated that Mif inhibited reactive oxygen species (ROS) generation and Smad3 activation, and rescued the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Smad3 inhibitors, SIS3 and Naringenin, and Smad3 siRNA could reverse the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Taken together, our data demonstrated that the Smad3-miR-29b/miR-29c axis mediates the inhibitory effect of macrophage migration inhibitory factor on cardiac fibrosis.  相似文献   

3.
Colorectal cancer (CRC) is a form of cancer developing from either the colon or rectum. Nowadays, research supports the functionality of exosome expressing microRNAs (miRNAs) as potential biomarker for various cancers including CRC. This study was performed with the intent of investigating the roles of both bone marrow-derived mesenchymal stem cells (BMSCs) and exosomal miR-16-5p in CRC by regulating integrin α2 (ITGA2). A microarray-based analysis was conducted to screen the CRC-associated differentially expressed genes (DEGs) as well as potential regulatory miRNAs. Next, the role of miR-16-5p in terms of its progression in association with CRC was determined. Subsequently, CRC cells were exposed to exosomes secreted by BMSCs transfected with miR-16-5p, isolated and cocultured with CRC cells in an attempt to identify the role of exosomes. Effects of BMSCs-derived exosomes overexpressing miR-16-5p on biological functions of CRC cells and tumorigenicity were all subsequently detected. Effects of miR-16-5p treated with CRC cells in regard to CRC in vivo were also measured. ITGA2 was overexpressed, while miR-16-5p was poorly expressed in CRC cells and miR-16-5p targeted ITGA2. The in vitro experiments revealed that the BMSCs-derived exosomes overexpressing miR-16-5p inhibited proliferation, migration, and invasion, while simultaneously stimulating the apoptosis of the CRC cells via downregulation of ITGA2. Furthermore, the results of in vivo experiments confirmed that the BMSCs-derived exosomes overexpressing miR-16-5p repressed the tumor growth of CRC. Collectively, BMSCs-derived exosomes overexpressing miR-16-5p restricted the progression of CRC by downregulating ITGA2.  相似文献   

4.
Exosomal microRNA (miRNA) exerts potential roles in non-small-cell lung cancer (NSCLC). The current study elucidated the role of miR-30b-5p shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived exosomes in treating NSCLC. Bioinformatics analysis was performed with NSCLC-related miRNA microarray GSE169587 and mRNA data GSE74706 obtained for collection of the differentially expressed miRNAs and mRNAs. The relationship between miR-30b-5p and EZH2 was predicted and confirmed. Exosomes were isolated from BMSCs and identified. BMSCs-derived exosomes overexpressing miR-30b-5p were used to establish subcutaneous tumorigenesis models to study the effects of miR-30b-5p, EZH2 and PI3K/AKT signalling pathway on tumour growth. A total of 86 BMSC-exo-miRNAs were differentially expressed in NSCLC. Bioinfomatics analysis found that BMSC-exo-miR-30b-5p could regulate NSCLC progression by targeting EZH2, which was verified by in vitro cell experiments. Besides, the target genes of miR-30b-5p were enriched in PI3K/AKT signalling pathway. Animal experiments validated that BMSC-exo-miR-30b-5p promoted NSCLC cell apoptosis and prevented tumorigenesis in nude mice via EZH2/PI3K/AKT axis. Collectively, the inhibitory role of BMSC-derived exosomes-loaded miR-30b-5p in NSCLC was achieved through blocking the EZH2/PI3K/AKT axis.  相似文献   

5.
The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = –0.337, rs = –0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.  相似文献   

6.
7.
Numbers of emerging evidence suggest that variable microRNA (miRNA) expression facilitates the aging process. In this study, we distinguished aberrant miRNA expression in aged skin and explored the biological functions and potential mechanism of upregulated miR-302b-3p. At first, miRNA microarray analysis was examined to explore miRNA expression profiling in the skin of aging mice model by D -galactose (d -gal) injection. We identified 29 aberrant miRNAs in aged mice skin. Next, KEGG enrichment analysis was conducted with DIANA-miPath v3.0, which was revealed that enrichment pathways involved in such processes as extracellular matrix-receptor interaction, MAPK signaling pathway, and mammalian target of rapamycin (mTOR) signaling pathway. The target genes of deregulated miRNAs were predicted from four bioinformatic algorithms (miRDB, Targetscan, miRwalk, and Tarbase). The interaction network of miRNAs and their targets were visualized using Cytoscape software. As a result, we found that some hub genes (including JNK2, AKT1/2/3, PAK7, TRPS1, BCL2L11, and IKZF2) were targeted by 12 potential miRNAs (including miR-302b-3p, miR-291a-5p, miR-139-3p, miR-467c-3p, miR-186-3p, etc.). Subsequently, we identified five upregulated miRNA via quantitative polymerase chain reaction and all of them were confirmed increased significantly in aged skin tissues compared with young control tissues. Among them, high expression of miR-302b-3p was verified in both aged skin tissues and senescence fibroblasts. Furthermore, miR-302b-3p mimic accelerated skin fibroblast senescence and suppressed the longevity-associated gene Sirtuin 1(Sirt1) expression, whereas miR-302b-3p inhibitor could delay skin fibroblast senescence and contribute Sirt1 expression. In addition, we demonstrated that c-Jun N-terminal kinase 2(JNK2) is a direct target of miR-302b-3p by a luciferase reporter assay. An inverse correlation was verified in fibroblasts between miR-302b-3p and JNK2. Most importantly, siRNA JNK2 confirmed that low expression of JNK2 could accelerate fibroblasts senescence. In conclusion, our results indicated that overexpressed miR-302b-3p plays an important biological role in accelerating skin aging process via directly targeting JNK2 gene.  相似文献   

8.
9.
Sepsis-induced acute lung injury is associated with dysregulated inflammatory reactions. MiR-19b-3p level was reported to be downregulated in patients with sepsis. To evaluate the role of miR-19b-3p in sepsis, cecum ligation and puncture-induced mouse sepsis model and lpopolysaccharide (LPS)-treated pulmonary microvascular endothelial cells (PMVECs) were used. For in vivo study, lung tissue was harvested for hematoxylin and eosin (H&E) staining, tumor necrosis factor-α, interleukin-6 (IL-6), IL-1β, and p-p65, p-IκB measuring. Cell apoptosis was assessed by TUNEL assay. For in vitro study, cell proliferation and apoptosis were detected by CCK-8 and flow cytometry, respectively. Methylation of miR-19b-3p promoter was measured by methylation-specific PCR (MSP) assay. The target of miR-19b-3p was determined by dual-luciferase reporter gene assay. The level of miR-19b-3p was determined to be downregulated in vitro and in vivo. In addition, miR-19b-3p protected mice from inflammation injury through inhibiting NF-κB signaling pathway. Overexpression of miR-19b-3p increased cell viability, decreased apoptosis, and proinflammatory cytokines secretion in LPS-treated PMVECs. Besides these, Krüppel-like factor 7 (KLF7) was confirmed as the target of miR-19b-3p. And methylation of miR-19b-3p was the reason of decreased miR-19b-3p level. In conclusion, miR-19b-3p protected cells from sepsis-induced inflammation injury via inhibiting NF-κB signaling pathway, and KLF7 was a potential target.  相似文献   

10.
Lung cancer is the most aggressive tumour afflicting patients on a global scale. Extracellular vesicle (EV)-delivered microRNAs (miRs) have been reported to play critical roles in cancer development. The current study aimed to investigate the role of hypoxic bone marrow mesenchymal cell (BMSC)-derived EVs containing miR-328-3p in lung cancer. miR-328-3p expression was determined in a set of lung cancer tissues by RT-qPCR. BMSCs were infected with lentivirus-mediated miR-328-3p knock-down and then cultured in normoxic or hypoxic conditions, followed by isolation of EVs. Following ectopic expression and depletion experiments in lung cancer cells, the biological functions of miR-328-3p were analysed using CCK-8 assay, flow cytometry and Transwell assay. Xenograft in nude mice was performed to test the in vivo effects of miR-328-3p delivered by hypoxic BMSC-derived EVs on tumour growth of lung cancer. Finally, the expression of circulating miR-328-3p was detected in the serum of lung cancer patients. miR-328-3p was highly expressed in EVs derived from hypoxic BMSCs. miR-328-3p was delivered to lung cancer cells by hypoxic BMSC-derived EVs, thereby promoting lung cancer cell proliferation, invasion, migration and epithelial-mesenchymal transition. miR-328-3p targeted NF2 to inactivate the Hippo pathway. Moreover, EV-delivered miR-328-3p increased tumour growth in vivo. Additionally, circulating miR-328-3p was bioactive in the serum of lung cancer patients. Taken together, our results demonstrated that hypoxic BMSC-derived EVs could deliver miR-328-3p to lung cancer cells and that miR-328-3p targets the NF2 gene, thereby inhibiting the Hippo pathway to ultimately promote the occurrence and progression of lung cancer.  相似文献   

11.
Dysregulation of non-coding RNAs (ncRNAs) has been proved to play pivotal roles in epithelial-mesenchymal transition (EMT) and fibrosis. We have previously demonstrated the crucial function of long non-coding RNA (lncRNA) ATB in silica-induced pulmonary fibrosis-related EMT progression. However, the underlying molecular mechanism has not been fully elucidated. Here, we verified miR-29b-2-5p and miR-34c-3p as two vital downstream targets of lncRNA-ATB. As opposed to lncRNA-ATB, a significant reduction of both miR-29b-2-5p and miR-34c-3p was observed in lung epithelial cells treated with TGF-β1 and a murine silicosis model. Overexpression miR-29b-2-5p or miR-34c-3p inhibited EMT process and abrogated the pro-fibrotic effects of lncRNA-ATB in vitro. Further, the ectopic expression of miR-29b-2-5p and miR-34c-3p with chemotherapy attenuated silica-induced pulmonary fibrosis in vivo. Mechanistically, TGF-β1-induced lncRNA-ATB accelerated EMT as a sponge of miR-29b-2-5p and miR-34c-3p and shared miRNA response elements with MEKK2 and NOTCH2, thus relieving these two molecules from miRNA-mediated translational repression. Interestingly, the co-transfection of miR-29b-2-5p and miR-34c-3p showed a synergistic suppression effect on EMT in vitro. Furthermore, the co-expression of these two miRNAs by using adeno-associated virus (AAV) better alleviated silica-induced fibrogenesis than single miRNA. Approaches aiming at lncRNA-ATB and its downstream effectors may represent new effective therapeutic strategies in pulmonary fibrosis.  相似文献   

12.
Our current research aimed to decipher the role and underlying mechanism with regard to miR-29b-3p involving in myocardial ischemia/reperfusion (I/R) injury. In the present study, cardiomyocyte H9c2 cell was used, and hypoxia/reoxygenation (H/R) model was established to mimic the myocardial I/R injury. The expressions of miR-29b-3p and pentraxin 3 (PTX3) were quantified deploying qRT-PCR and Western blot, respectively. The levels of LDH, TNF-α, IL-1β and IL-6 were detected to evaluate cardiomyocyte apoptosis and inflammatory response. Cardiomyocyte viability and apoptosis were examined employing CCK-8 assay and flow cytometry, respectively. Verification of the targeting relationship between miR-29b-3p and PTX3 was conducted using a dual-luciferase reporter gene assay. It was found that miR-29b-3p expression in H9c2 cells was up-regulated by H/R, and a remarkable down-regulation of PTX3 expression was demonstrated. MiR-29b-3p significantly promoted of release of inflammatory cytokines of H9c2 cells, and it also constrained the proliferation and promoted the apoptosis of H9c2 cells. Additionally, PTX3 was inhibited by miR-29b-3p at both mRNA and protein levels, and it was identified as a direct target of miR-29b-3p. PTX3 overexpression could reduce the inflammatory response, increase the viability of H9c2 cells, and inhibit apoptosis. Additionally, PTX3 counteracted the function of miR-29b-3p during the injury of H9c2 cells induced by H/R. In summary, miR-29b-3p was capable of aggravating the H/R injury of H9c2 cells by repressing the expression of PTX3.  相似文献   

13.
Herein, we found that serum chemokine ligand 14 (CXCL14) was significantly enhanced in patients with idiopathic pulmonary fibrosis (IPF). In our current study, mouse L929 fibroblasts were stimulated with lipopolysaccharide (LPS) (100 ng/mL). Cell proliferation, the levels of matrix metalloproteinase 2 (MMP2) and MMP9, as well as extracellular matrix (ECM) content were assessed to evaluate the fibrogenesis of L929 cells. Proliferating cell nuclear antigen and cell viability were assessed to evaluate cell proliferation. Hydroxyproline (Hyp), collagen I/III, connective tissue growth factor (CTGF), and phosphorylated Smad2/3 (p-Smad2/3) were assessed to evaluate ECM secretion and deposition. α-Smooth muscle actin (α-SMA) was used to measure the occurrence of differentiation from fibroblast toward myofibroblast. Our data suggested that knockdown of CXCL14 prevented LPS-induced fibrogenesis of L929 cells through inhibiting cell proliferation and decreasing the expression of MMP2/9, Hyp, collagen I/III, CTGF, p-Smad2/3, and α-SMA. Notably, upregulation of protein phosphatase magnesium-dependent 1A (PPM1A) was involved in this process. On the contrary, recombinant CXCL14 protein led to an opposite effect. We first suggested that overexpression of PPM1A ameliorated LPS-induced fibrogenesis. Furthermore, we substantiated that knockdown of CXCL14 exerted an antifibrotic effect in IPF in vitro probably via the upregulation of PPM1A. Besides, evidently enhanced CXCL14, yet reduced PPM1A, was found in bleomycin-induced rat pulmonary fibrosis, confirming the roles of CXCL14 and its potential association with PPM1A in IPF in vivo. In conclusion, CXCL14 could be considered as a therapeutic target for preventing fibrogenesis of mouse L929 fibroblasts.  相似文献   

14.
15.
Hepatic pathological angiogenesis (HPA) is the key event of hepatic fibrosis (HF). Xueshisanjia powder (XSSJS), a Chinese herbal compound, is beneficial for alleviating pathological angiogenesis of hepatic tissue. The present study attempts to reveal the effect and mechanism of XSSJS via regulating miR-29b-3p/VEGFA axis against pathological angiogenesis in HF. In in vitro model, human embryonic kidney 293T cells were transfected with miR-29b-3p mimics, whereby the expression of miR-29b-3p was tested by real-time quantitative polymerase chain reaction (RT-qPCR), ensued by Luciferase assay determining the relationship between miR-29b-3p and vascular endothelial cell growth factor A (VEGFA). In addition, miR-29b-3p mimic transfected into the activated hepatic stellate cell T6 (HSC-T6). The Cell-Counting-Kit 8 (CCK8) and 5-Bromodeoxyuridine (BrdU) staining were first utilized to detect the antiproliferative efficiency of XSSJS following the XSSJS compound serum intervention, and then used to observe the expression of transforming growth factor-β (TGF-β), VEGFA, platelet-derived growth factor (PDGF) via RT-PCR, Western blot (WB), and Immunofluorescence (IF) methods. During the in vivo model, XSSJS with boil-free granules were fed to Wistar rats with liver fibrosis caused by intraperitoneal injection of pig serum followed by the transfection of miR-29b-3p adeno-associated virus (AAV). Hematoxylin–Eosin (HE) staining was used for histopathology assessment. The expression of miR-29b-3p, VEGFA, PDGF, TGF-β have been investigated in liver tissue using RT-PCR, WB, IF. The results verified that XSSJS could up-regulate miR-29b-3p and suppress the expression of VEGFA, PDGA, and TGF-β. In mechanism, miR-29b-3p primarily targeted the 3′UTR of VEGFA. In conclusion, XSSJS could modulate miR-29b-3p/VEGFA axis to inhibit the pathological angiogenesis of HF.  相似文献   

16.

Background

Idiopathic pulmonary fibrosis exhibits differential progression from the time of diagnosis but the molecular basis for varying progression rates is poorly understood. The aim of the present study was to ascertain whether differential miRNA expression might provide one explanation for rapidly versus slowly progressing forms of IPF.

Methodology and Principal Findings

miRNA and mRNA were isolated from surgical lung biopsies from IPF patients with a clinically documented rapid or slow course of disease over the first year after diagnosis. A quantitative PCR miRNA array containing 88 of the most abundant miRNA in the human genome was used to profile lung biopsies from 9 patients with rapidly progressing IPF, 6 patients with slowly progressing IPF, and 10 normal lung biopsies. Using this approach, 11 miRNA were significantly increased and 36 were significantly decreased in rapid biopsies compared with normal biopsies. Slowly progressive biopsies exhibited 4 significantly increased miRNA and 36 significantly decreased miRNA compared with normal lung. Among the miRNA present in IPF with validated mRNA targets were those with regulatory effects on epithelial-mesenchymal transition (EMT). Five miRNA (miR-302c, miR-423-5p, miR-210, miR-376c, and miR-185) were significantly increased in rapid compared with slow IPF lung biopsies. Additional analyses of rapid biopsies and fibroblasts grown from the same biopsies revealed that the expression of AGO1 and AGO2 (essential components of the miRNA processing RISC complex) were lower compared with either slow or normal lung biopsies and fibroblasts.

Conclusion

These findings suggest that the development and/or clinical progression of IPF might be the consequence of aberrant miRNA processing.  相似文献   

17.
Idiopathic pulmonary fibrosis (IPF; a progressive lung disease) is characterized by parenchymal remodeling with enlarged air spaces called honeycomb cysts and palisades of fibroblasts called fibroblast foci. In IPF, lung epithelial cells covering honeycomb cysts and fibroblast foci aberrantly express the active conformation of the potent fibrogenic cytokine transforming growth factor-beta1 (TGF-beta1). Using explanted rat lung slices, we transfected alveolar epithelial cells with the retrovirus pMX containing a site-directed mutation in which Cys223 and Cys225 were substituted with serines, resulting in release of biologically active TGF-beta1 and fibroblast proliferation and remodeling that resembled IPF. Fibroblasts obtained from transfected explants and in culture for 6 weeks incorporated 6.59 +/- 1.55-fold more [3H]thymidine compared with control fibroblasts without transfection or fibroblasts obtained from transfected explants cultured with antibody to fibroblast growth factor-2 (FGF-2). Primary lung fibroblasts obtained from normal rat lungs cultured with TGF-beta1 expressed increased levels of phosphorylated p38 MAPK and JNK, but not ERK1/2. The presence of TGF-beta1 caused an immediate release of extracellular FGF-2 from primary pulmonary fibroblasts; and in the presence of anti-FGF-2 antibody, phosphorylated p38 MAPK and JNK were abrogated. TGF-beta inhibits cell proliferation by suppression of c-Myc and induction of p15INK46, p21CIP1, or p27KIP. Fibroblasts cultured with TGF-beta1 showed no regulation of c-Myc or induction of p15INK46, p21CIP1,or p27KIP. These findings suggest that pulmonary fibroblasts may not respond to the anti-proliferative effects of TGF-beta1, but proliferate in response to TGF-beta1 indirectly by the release of FGF-2, which induces phosphorylation of p38 MAPK and JNK.  相似文献   

18.
Long non-coding RNA (lncRNA) was reported to be a critical regulator of cellular homeostasis, but poorly understood in idiopathic pulmonary fibrosis (IPF). Here, we systematically identified a crucial lncRNA, p53-induced long non-coding RNA TP53 target 1 (TP53TG1), which was the dysregulated hub gene in IPF regulatory network and one of the top degree genes and down-regulated in IPF-drived fibroblasts. Functional experiments revealed that overexpression of TP53TG1 attenuated the increased expression of fibronectin 1 (Fn1), Collagen 1α1, Collagen 3α1, ACTA2 mRNA, Fn1, and Collagen I protein level, excessive fibroblasts proliferation, migration and differentiation induced by TGF-β1 in MRC-5 as well as PMLFs. In vivo assays identified that forced expression of TP53TG1 by adeno-associated virus 5 (AAV5) not only prevented BLM-induced experimental fibrosis but also reversed established lung fibrosis in the murine model. Mechanistically, TP53TG1 was found to bind to amount of tight junction proteins. Importantly, we found that TP53TG1 binds to the Myosin Heavy Chain 9 (MYH9) to inhibit its protein expression and thus the MYH9-mediated activation of fibroblasts. Collectively, we identified the TP53TG1 as a master suppressor of fibroblast activation and IPF, which could be a potential hub for targeting treatment of the disease.Subject terms: Long non-coding RNAs, Respiratory tract diseases  相似文献   

19.
Intriguingly, microRNAs (miRs) transferred as cargo in extracellular vesicles (EVs) can modulate wound healing through their regulation of fibroblast functions. In this study, we investigated the effects of miR-106b transfer via EVs derived from human umbilical vein endothelial cells (HUVECs) on skin wound healing. Dual-luciferase reporter gene assay identified that miR-106b could target and inhibit JMJD3. RT-qPCR analysis showed EVs isolated from HUVECs had enriched expression of miR-106b. LL29 fibroblast cells and HaCaT keratinocytes were co-cultured with HUVEC-derived EVs, in which miR-106b had been up-regulated or down-regulated by its mimic or inhibitor. The co-culture with HUVEC-derived EVs increased miR-106b expression, and reduced the viability and adhesion of LL29 and HaCaT cells, whereas the inhibition of miR-106b in HUVEC-derived EVs enhanced the viability and adhesion of LL29 and HaCaT cells through up-regulation of JMJD3. Next, we showed that JMJD3 overexpression enhanced LL29 and HaCaT cell viability and adhesion through elevating RIPK3, which induced the phosphorylation of AKT during the wound-healing process. We next developed a mouse skin wound model to investigate the actions of miR-106b in vivo after 14 days. The delivery of miR-106b via HUVEC-derived EVs delayed wound healing through suppression of collagen I content and angiogenesis, but had no effects on pro-inflammatory cytokines. In conclusion, miR-106b from HUVEC-derived EVs inhibits JMJD3 and RIPK3, leading to the inhibition of skin wound healing, thus constituting a new therapeutic target.  相似文献   

20.
Increasing focus has come to the role of extracellular vesicles (EVs) in various cancers. Hence, we designed this study to explore the mechanism whereby microRNA-342-3p (miR-342-3p)-containing EVs derived from BMSCs might affect breast cancer. MCF-7 breast cancer cell line was co-incubated with the EVs isolated from rat BMSCs, followed by alteration of miR-342-3p and INHBA expression. Microarray-based analyses predicted a possible regulatory mechanism involving miR-342-3p, INHBA, and IL13Rα2 in breast cancer, which was verified by luciferase reporter, RNA pull-down, and RIP assays. Besides, in order to evaluate the effects of miR-342-3p on the biological features of breast cancer cells in vitro and in vivo, we employed the scratch assay, Transwell assay, CCK-8 assay, and nude mouse tumorigenicity assay. miR-342-3p carried by BMSC-EVs was transferred into breast cancer cells through co-culture, which inhibited the proliferation and metastasis of breast cancer cells in vitro. miR-342-3p downregulated the expression of INHBA, which further repressed the expression of IL13Rα2. Finally, the in vivo experimental results revealed the inhibitory role of miR-342-3p in tumor growth and metastasis in nude mice. To sum up, BMSC-EVs carrying miR-342-3p could prevent breast cancer growth and metastasis by downregulating the INHBA/IL13Rα2 axis, highlighting a potential target for anti-cancer treatment for breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号