首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Osteosarcoma is one of the commonest metastatic tumor in children and teenagers, and has a hopeless, prognosis. Long non-coding RNA (lncRNA) acts momentous roles as a regulator on the proliferation and migration of cancer. Here, we performed GEO database analysis and qPCR to identify differentially expressed lncRNAs in osteosarcoma cells. Knockdown of lncRNA LINC01140 was used to detect the effect of LINC01140 on the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. Bioinformatics analysis and qPCR identified the LINC01140/miR-139-5p/Homeobox A9 (HOXA9) regulatory axis. RNA immunoprecipitation assay, Dual-luciferase assay, and rescue experiments confirmed the interaction of LINC01140/miR-139-5p/HOXA9 in osteosarcoma. LINC01140 was overexpressed in osteosarcoma and knocking down LINC01140 restrained the proliferation and invasion of osteosarcoma cells and EMT. In Saos2 and MG63 cells, LINC01140 sponged miR-139-5p, and a miR-139-5p inhibitor overturned the suppression of LINC01140 knockdown on the proliferation and migration of osteosarcoma cells. Moreover, miR-139-5p depressed the invasion, proliferation, and EMT of osteosarcoma cells via targeting HOXA9. Our results indicate that LINC01140 downregulation inhibits the invasion, proliferation, and EMT in osteosarcoma cells through targeting the miR-139-5p/HOXA9 axis. Therefore, LINC01140 is a potential therapeutic target for osteosarcoma.  相似文献   

3.
4.
5.
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers, and long noncoding RNAs (lncRNAs) regulate gene expression or activities. This study investigated the role of lncRNA LINC00551 in ESCC development and progression. Three paired ESCC and normal tissues were subjected to next‐generation sequencing and we identified 82 upregulated and 60 downregulated lncRNAs, including LINC00551, which was confirmed to markedly downregulated in 78 ESCC tissues and in the Gene Expression Profiling Interactive Analysis data set. Downregulated LINC00551 expression was associated with lymph node metastasis, advanced TNM stage, and tumor size. Moreover, downregulated LINC00551 expression was also associated with poor progression‐free survival and overall survival of ESCC patients. In vitro and in vivo, LINC00551 overexpression inhibited ESCC cell proliferation and invasion, whereas knockdown of LINC00551 expression promoted ESCC cell proliferation and invasion. RNA pull‐down and mass spectrometry assays identified the potential LINC00551 binding proteins, and HSP27 was a promising LINC00551 targeting proteins after RNA immunoprecipitation assay. At the protein level, LINC00551 bound to and decreased HSP27 phosphorylation, and in turn, downregulated ESCC cell proliferation and invasion. The current study demonstrated the functional significance of LINC00551 in ESCC development, progression, and prognosis. Further study will assess LINC00551 as a novel prognostic marker or therapeutic target for ESCC.  相似文献   

6.
BackgroundThe pathogenesis of bladder cancer (BLCa) is still unclear. Long non-coding RNAs (lncRNAs) participate in diverse biological processes across every branch of life, especially in cancer. Dysregulated lncRNAs in BLCa and their biological significance require further investigations.MethodsHerein, a differential expression profile of lncRNAs in BLCa was conducted by microarray data. The expression level of lncRNA LINC01451 in 70 pairs of BLCa tissue samples and different BLCa cell lines were analyzed via real-time quantitative PCR. The CRISPR-CAS9 technique was employed to establish the LINC01451 stably transfected cell lines. Loss-of-function, as well as gain-of-function assays were carried out to evaluate the effects of LINC01451 on cell proliferation, migration, and invasion. Patient-derived xenograft (PDX) mouse models were adopted in the in vivo experiments. Western blot, biotinylated RNA probe pull-down assay, fluorescence in situ hybridization, and immunohistochemistry were utilized to assess the underlying molecular mechanisms of LINC01451 in BLCa.ResultsLINC01451 was identified a novel functional lncRNA, whose expression level in BLCa tissues was significantly higher compared with the normal tissues. Furthermore, it was found that LINC01451 directly docked LIN28A and LIN28B, and promoted the proliferation, invasion, and metastasis of BLCa. Mechanistically, LINC0145 was shown to depend on LIN28A and LIN28B, facilitated epithelial-mesenchymal transition (EMT) through activating the TGF-β/Smad signaling pathway, which subsequently aggravated BLCa progression.ConclusionsWe demonstrates that LINC01451 drives EMT-induced BLCa progression by activating the LIN28/TGF-β/Smad signaling pathway. Promisingly, LINC01451 acts as a prognostic biomarker and a novel therapeutic target for BLCa.  相似文献   

7.
Long noncoding RNAs (lncRNAs) have been shown to have critical regulatory roles in tumorigenesis. lncRNA LINC01561 (LINC01561) is a newly identified tumor-related lncRNA and its dysregulation has been demonstrated in several tumors. However, whether LINC01561 is involved in the progression of non-small-cell lung carcinoma (NSCLC) and its underlying mechanisms remain unknown. In this study, we first provided evidence that LINC01561 expressions were distinctly upregulated in NSCLC tissues and cell lines. Combining with bioinformatics assays and mechanism experiments, our group demonstrated that LINC01561 was activated by SOX2 in NSCLC. Clinical research revealed that upregulation of LINC01561 was related to poorer clinicopathologic features and shorter survival time. Functionally, suppression of LINC01561 exhibited tumor-suppressive functions through impairing cell proliferation, migration, and invasion as well as inducing apoptosis. Moreover, we verified that LINC01561 could directly bind to miR-760, isolating miR-760 from its target gene SHC SH2 domain-binding protein 1 (SHCBP1). We also found that SHCBP1 was lowly expressed in NSCLC and served as a tumor promoter. A functional study indicated that LINC01561 regulated SHCBP1 expression by competitively binding to miR-760. In summary, our findings indicated that SOX2-induced overexpression of LINC01561 promoted the proliferation and metastasis by acting as a competing endogenous RNA to modulate SHCBP1 by sponging miR-760.  相似文献   

8.
Long non-coding RNA (lncRNA) is emerging as a critical regulator in multiple cancers. Recently, lncRNA PCAT-1 was found to be up-regulated in prostate cancer and hepatocellular carcinoma, exerting oncogenic effects. However, the biological function and regulatory mechanism of PCAT-1 remain unclear in osteosarcoma (OS). In this study, we reported that PCAT-1 expression was also upregulated in OS tissues, and its overexpression was remarkably associated with tumor size, Enneking stage, tumor node metastasis (TNM) stage and metastasis in patients with OS. Knockdown of PCAT-1 suppressed OS cells proliferation, migration and invasion in vitro, and inhibited the tumorigenicity of OS cells in vivo. Mechanistic investigations revealed that PCAT-1 could interact with EZH2, thereby repressing p21 expression. Additionally, rescue experiments indicated that PCAT-1 functioned as an oncogene partly via suppressing p21 in OS cells. Collectively, our findings demonstrate that PCAT-1 is a new candidate for use in OS diagnosis, prognosis and therapy.  相似文献   

9.
Long noncoding RNAs (lncRNAs) play crucial roles in tumor development of osteosarcoma (OS). LncRNA PCAT6 was involved in the progression of multiple human cancers. However, the biological function of PCAT6 in OS remains largely unknown. We found that PCAT6 was elevated in OS tissues relative to that in their adjacent normal tissues. The upregulation of PCAT6 was positively associated with metastasis status and advanced stages and predicted poor overall and progression-free survivals in patients with OS. Functionally, silencing PCAT6 inhibited the proliferation, migration and invasion abilities of OS cells. Mechanistically, PCAT6, acting as a competitive endogenous RNA, upregulated expression of TGFBR1 and TGFBR2 to activate TGF-β pathway via sponging miR-185–5p. This study uncovers a novel underlying molecular mechanism of PCAT6-miR-185-5p-TGFBR1/2-TGF-β signaling axis in promoting tumor progression in OS, which indicates that PCAT6 may serve as a promising prognostic factor and therapeutic target again OS.  相似文献   

10.
11.
The long intergenic non‐protein coding RNA regulator of reprogramming (lncRNA‐ROR) has been reported to play crucial regulatory roles in the pathogenesis and progression of multiple cancers. However, whether ROR is associated with the initiation and development of osteosarcoma (OS) remains unclear. Here, we found that ROR expression level was significantly up‐regulated in OS tissue samples compared to adjacent normal tissues, and the elevated ROR was closely correlated with advanced tumour‐node‐metastasis (TNM) stage and lymph node metastasis and poor overall survival rate. Functional assays showed that ROR knockdown suppressed the OS cell proliferation, colony formation, migration and invasion in vitro, and retarded tumour growth in vivo. In addition, miR‐206 was verified to be a target miRNA of ROR using bioinformatics online program and luciferase report assay. miR‐206 inhibition partially rescued the inhibitory effects on OS cells induced by ROR knockdown. In conclusion, these results suggested that ROR function as an oncogene in OS by sponging miR‐206 and might be a potential therapeutic target for patients with OS.  相似文献   

12.
Long intergenic noncoding RNA 460 (LINC00460) has been identified as a critical regulator for multiple types of cancers. However, the biological role and underlying mechanism in human papillary thyroid carcinoma (PTC) still remain unclear and need to be uncovered. This study was aimed to ascertain the biological role and molecular mechanism of LINC00460 in PTC progression. Our findings revealed that the level of LINC00460 was significantly upregulated in PTC tissues and cell lines, which was positively correlated with advanced tumor–node–metastasis (TNM) stage and lymph node metastasis. Cellular experiments exhibited that knockdown of LINC00460 decreased proliferative, migratory, and invasive abilities of PTC cells. Mechanism assays noted that knockdown of LINC00460 suppressed cell proliferation, migration, and invasion, and inhibited expression of sphingosine kinase 2 (SphK2, a target of miR-613) in PTC cells, at least in part, by regulating miR-613. These findings suggested that LINC00460 could function as a competing endogenous RNA to regulate SphK2 expression by sponging miR-613 in PTC. Targeting LINC00460 could be a promising therapeutic strategy for patients with PTC.  相似文献   

13.
14.
Rapid proliferation and metastasis of breast cancers resulted in poor prognosis in clinic. Recent studies have proved that long noncoding RNAs (lncRNAs) were involved in tumor progression. In this study, we aimed to determine the roles and mechanisms of lncRNA–cell division cycle 6 (CDC6) in regulating proliferation and metastasis of breast cancer. Clinically, lncRNA–CDC6 was highly expressed in tumor tissues and was positively correlated with clinical stages of breast cancers. Functionally, the ectopic expression of lncRNA–CDC6 promoted proliferation via regulation of G1 phase checkpoint, and further promoting the migration capability. Moreover, lncRNA–CDC6 could function as competitive endogenous RNA (ceRNA) via directly sponging of microRNA-215 (miR-215), which further regulating the expression of CDC6. Taken together, our results proved that lncRNA–CDC6 could function as ceRNA and promote the proliferation and metastasis of breast cancer cells, which provided a novel prognostic marker for breast cancers in clinic.  相似文献   

15.
Long noncoding RNAs (lncRNAs) have recently emerged as important biomarkers of cancer progression. Here, we proposed to develop a lncRNA-based signature with a prognostic value for colorectal cancer (CRC) overall survival (OS). Through mining microarray datasets, we analyzed the lncRNA expression profiles of 122 patients with CRC from Gene Expression Omnibus. Associations between lncRNA and CRC OS were firstly evaluated through univariate Cox regression analysis. A random survival forest method was applied for further screening of the lncRNA signature, which resulted in eight lncRNAs, including PEG3-AS1, LOC100505715, MINCR, DBH-AS1, LINC00664, FAM224A, LOC642852, and LINC00662. Combination of the eight lncRNAs weighted by their multivariate Cox regression coefficients formed a prognostic signature, through which, we could divide the 122 patients with CRC into two subgroups with significantly different OS. Good robustness of the lncRNA signature's prognostic value was verified through an independent data set consisting of 55 patients with CRC. In addition, gene set enrichment analysis indicated the potential association between high prognostic value and oxygen metabolism-related processes. This result should indicate that lncRNAs could be a useful signature for CRC prognosis.  相似文献   

16.
17.
Long non‐coding RNA (lncRNA) is one of the important regulators of many malignancies. However, the biological function and clinical significance of a large number of lncRNAs in gastric cancer remain unclear. Therefore, we analysed the TCGA data to find that LINC01303 is significantly up‐regulated in gastric cancer tissues. However, the biological function of LINC01303 in GC remains unknown. In our study, we found that the expression of LINC01303 was significantly higher in GC tissues than in adjacent tissues by real‐time quantitative PCR. We can significantly inhibit the malignant proliferation, migration and invasion of GC cells by silencing LINC01303 expression. In addition, LINC01303 knockdown can also inhibit GC growth in vivo. After the bioinformatics analysis, we found that LINC01303 can be used as a miR‐101‐3p sponge to competitively adsorb miR‐101‐3p with EZH2. Therefore, our results indicate that LINC01303 promotes the expression of EZH2 by inhibiting miR‐101‐3p activity and promotes GC progression. In summary, in this study, we demonstrated for the first time that the LINC01303/miR‐101‐3p/EZH2 axis promotes GC progression.  相似文献   

18.
Long noncoding RNAs (lncRNAs) have been identified to have increasingly important roles in tumorigenesis, and they may serve as novel biomarkers for cancer therapy. Recent studies have demonstrated that lncRNA NBR2 (neighbor of BRCA1 gene 2), a novel identified lncRNA, is decreased in several cancers; however, the role of NBR2 in the development of osteosarcoma has not been elucidated. In our study, we found that NBR2 expression was downregulated in osteosarcoma tissues, and osteosarcoma cases with lower NBR2 expression exhibited a shorter overall survival time compared with those with higher NBR2 expression. NBR2 overexpression inhibited osteosarcoma cell proliferation, invasion, and migration but did not increase apoptosis. Furthermore, RNA-binding protein immunoprecipitation assays confirmed that NBR2 directly binds to Notch1 protein. Furthermore, overexpression of Notch1 in NBR2-overexpressing osteosarcoma cells reversed the effects of NBR2 on cell proliferation, invasion, migration, and epithelial-mesenchymal transition. The in vivo results showed that NBR2 overexpression inhibited tumor growth in nude mice that were inoculated with osteosarcoma cells. NBR2 overexpression also suppressed the messenger RNA (mRNA) expression of Notch1, N-cadherin, and vimentin and increased the mRNA expression of E-cadherin in the tumor tissues. These data indicated that NBR2 served as a tumor suppressor gene in osteosarcoma and inhibited osteosarcoma cell proliferation, invasion, and migration. The current study provides a novel insight and treatment strategy for osteosarcoma.  相似文献   

19.
Long noncoding RNA small nucleolar RNA host gene 1 (lnc-SNHG1) was reported to play an oncogenic role in the progression of cancers. However, the roles of SNHG1 and its molecular mechanism in osteosarcoma (OS) cells are largely unknown. In present study, we found that the expression of SNHG1 was up-regulated in OS tissues and cell lines. OS patients with the high SNHG1 expression were positively correlated with tumor size, TNM stage and lymph node metastasis. In addition, SNHG1 overexpression promoted cell proliferation, cell migration and EMT process in U2OS and MG63 cells and tumor growth in vivo. Furthermore, we also found that miR-577 could act as a ceRNAof SNHG1 in OS cells and the promotion of OS progression induced by lnc-SNHG1 overexpression required the inactivity of miR-577. Besides, we identified that WNT2B acted as a target of miR-577, and WNT2B played the oncogenic role in OS cells by activating Wnt/β-catenin pathway. In short, our study suggested that lnc-SNHG1 could promote OS progression via miR-577 and WNT2B. The lnc-SNHG1/miR-577/WNT2B/Wnt/β-catenin axis regulatory network might provide a potential new therapeutic strategy for OS treatment.  相似文献   

20.
Long non-coding RNAs (lncRNAs) biological functions and molecular mechanisms associated with pancreatic cancer (PC) remain to be poorly elucidated. We aimed to clarify the role of lncRNA LINC00261 (LINC00261) in PC and confirm its regulatory mechanisms. Bioinformatics analysis, RNA pull-down and RIP assays were performed to investigate relationship between LINC00261 and forkhead box P3 (FOXP3). Further, dual-luciferase reporter gene and ChIP assays were employed to confirm the relationship among LINC00261, FOXP3 and sterol carrier protein-2 (SCP2). PC cells were introduced with a series of vectors to verify the effects of LINC00261 and SCP2 on the viability, cell cycle progression, migration and angiogenesis of PC cells. Nude mice with the xenograft tumour were used to evaluate the effects LINC00261 on the tumourigenicity. LINC00261 was lowly expressed in PC tissues and cells. SCP2 was inhibited by LINC00261 through FOXP3. Functionally, upregulated LINC00261 or downregulated SCP2 led to reduced cell viability, migration, angiogenesis and tumourigenicity potentials. This study demonstrated the inhibitory role of LINC00261 in the angiogenesis and cell cycle progression of PC cells. It acts through the negative regulation of SCP2 via targeting FOXP3. Findings in this study highlight a potentially biomarker for PC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号