首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BackgroundOur previous study demonstrated that lncRNA GIHCG is upregulated in renal cell carcinoma (RCC) and that knockdown of lncRNA GIHCG suppresses the proliferation and migration of RCC cells. However, the mechanism of lncRNA GIHCG in RCC needs further exploration.MethodsThe proliferation, cell cycle, migration, and apoptosis of RCC cells were tested using CCK-8, flow cytometry, wound healing and Annexin-V/-FITC/PI flow cytometry assays, respectively. Dual-luciferase reporter and RNA pull-down or RNA immunoprecipitation assays (RIPs) were performed to analyze the interactions among lncRNA GIHCG, miR-499a-5p and XIAP. A tumour xenograft study was conducted to verify the function of lncRNA GIHCG in RCC development in vivo.ResultsKnockdown of lncRNA GIHCG inhibited cell proliferation and migration and induced G0/G1 arrest while promoting apoptosis. Overexpression of lncRNA GIHCG led to the opposite results. LncRNA GIHCG sponged miR-499a-5p and downregulated its expression in RCC cells. MiR-499a-5p overexpression suppressed RCC cell growth. MiR-499a-5p targeted XIAP and inhibited its expression. LncRNA GIHCG knockdown reduced the growth of tumour xenografts in vivo and the expression of XIAP while increasing miR-499a-5p levels.ConclusionLncRNA GIHCG accelerated the development of RCC by targeting miR-499a-5p and increasing XIAP levels.  相似文献   

3.
Immune escape of renal cell carcinoma (RCC) impacts patient survival. However, the molecular mechanism of long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in RCC immune escape remains unclear. Quantitative real-time PCR and western blotting results revealed that the expression of lncRNA SNHG1 and STAT3 were upregulated in RCC tissues and cells and that the expression of miR-129-3p was downregulated. Enzyme-linked immunosorbent assay results revealed the increased levels of immune-related factors (interferon-γ, tumour necrosis factor α, and interleukin-2) in RCC tissues. SNHG1 knockdown or miR-129-3p overexpression inhibited the proliferation and invasion of A498 and 786-O cells, while the proliferation and cytotoxicity of CD8+ T cells increased, which promoted the secretion of immune-related factors. STAT3 overexpression decreased the protective effect of miR-129-3p overexpression on RCC cell immune escape. In addition, miR-129-3p knockdown and STAT3 overexpression decreased the protective effect of lncRNA SNHG1 knockdown on RCC cell immune escape. In addition, PD-L1 expression was downregulated after lncRNA SNHG1 knockdown but upregulated after miR-129-3p knockdown and STAT3 overexpression. Dual-luciferase assays showed that lncRNA SNHG1 targets miR-129-3p, and miR-129-3p targets STAT3. RNA pull-down and RNA immunoprecipitation assays verified the regulatory relationship between SNHG1 and STAT3. In vivo, shSNHG1 prolonged the overall survival of RCC tumour model mice and inhibited RCC tumour growth and immune escape but increased CD8+ T cell infiltration in mice. Our findings provide an experimental basis for elucidating the molecular mechanisms of immune escape by RCC and reveal a novel target to treat this disease.  相似文献   

4.
microRNAs have been recognized to regulate a wide range of biology of renal cell carcinoma (RCC). Although miR-505 has been reported to play as a suppressor in several human tumors, the physiological function of miR-505 in RCC still remain unknown. Therefore, the role of miR-505 and relevant regulatory mechanisms were investigated in RCC in this study. Quantitative real-time polymerase chain reaction was conducted to detect the expression of miR-505 and high mobility group box 1 (HMGB1) in both RCC tissues and cell lines. Immunohistochemical staining was used to assess the correlation between HMGB1 expression and PCNA expression in RCC tissues. Subsequently, the effects of miR-505 on proliferation were determined in vitro using cell counting kit-8 proliferation assays and 5-ethynyl-2′-deoxyuridine incorporation. The molecular mechanism underlying the relevance between miR-505 and HMGB1 was confirmed by luciferase assay. Xenograft tumor formation was used to reflect the proliferative capacity of miR-505 in vivo experiments. Overall, a relatively lower miR-505 and higher HMGB1 expression in RCC specimens and cell lines were found. HMGB1 was verified as a direct target of miR-505 by luciferase assay. In vitro, overexpression of miR-505 negatively regulates HMGB1 to suppress the proliferation in Caki-1; meanwhile, knock-down of miR-505 negatively regulates HMGB1 to promote the proliferation in 769P. In addition, in vivo overexpression of miR-505 could inhibit tumor cell proliferation in RCC by xenograft tumor formation. Therefore, miR-505, as a tumor suppressor, negatively regulated HMGB1 to suppress the proliferation in RCC, and might serve as a novel therapeutic target for RCC clinical treatment.  相似文献   

5.
6.
Wang  Ke  Lin  Xiaofeng 《Mammalian genome》2022,33(3):517-524

Despite considerable improvements in renal cell carcinoma (RCC) diagnostic and therapeutic strategy, the clinical prognosis of patients is far from satisfactory due to its recurrence and metastasis. Here, we attempted to explore the role of circMTO1 in RCC progression, and the underlying mechanism was further elucidated. We first detected the expression of circMTO1 in 90 pairs of RCC tissues and adjacent normal tissues using qRT-PCR. Besides, circMTO1, miR-211, miR-204 and KLF6 expression levels in RCC cells were also measured using qRT-PCR. MTT assay, cell migration, flow cytometry analysis, qRT-PCR and western blotting analysis were applied to evaluating the effect of circMTO1 in RCC cells. The bioinformatics analysis and the rescue experiment were devoted to the underlying mechanism. The results demonstrated CircMTO1 expression was significantly down-regulated in RCC tissues and cell lines. Besides, CircMTO1 inhibited cell proliferation, migration and invasion, induced apoptosis in RCC cells. In addition, CircMTO1 serves as a sponge for miR-211 and miR-204, KLF6 is a direct target of miR-211 and miR-204. Furthermore, circMTO1 and KLF6 overexpression rescued the suppression of miR-211/204 in RCC cell proliferation. In short, circMTO1 repressed RCC progression by regulating KLF6 via sponging miR-211 and miR-204, which may provide new idea of diagnosis and treatment in renal cell carcinoma.

  相似文献   

7.
Renal cell carcinoma (RCC) is a common kidney tumor in adults. The role of miR-486-5p in RCC is unknown. The aim of our study was to identify new targets regulated by miR-486-5p in RCC, to obtain a deeper insight into the network and to better understand the role of these microRNAs and their targets in carcinogenesis of RCC. We performed a series of tests and found consistently lower expression levels of miR-486-5p in kidney cancer cells. Restoration of miR-486-5p expression in RCC cells could lead to the suppression of cell proliferation and the increase of cell apoptosis. Further studies demonstrated that TGF-β–activated kinase 1 was a target gene of miR-486-5p in kidney cancer cells. It was also shown that C-C motif chemokine ligand 2 (CCL2) from tumor-associated macrophages downregulated miR-486-5p expression, and miR-486-5p inhibited RCC cell proliferation and apoptosis resistance induced by CCL2. The study demonstrates that there are potential diagnosis and therapy values of miR-486-5p in RCC.  相似文献   

8.
The long intergenic noncoding RNA, regulator of reprogramming (linc-ROR) has been reported to participate in tumorigenesis, while its functions and fundamental mechanisms in esophageal squamous cell carcinoma (ESCC) remain unclear. In this study, gain-of-function assays showed that linc-ROR upregulation enhanced cell viability, promoted cell proliferation, and inhibited apoptosis. Mechanistically, the regulatory network of linc-ROR/miR-204-5p/MDM2 was established with bioinformatics analysis and online databases, then validated via dual-luciferase reporter assays, RNA immunoprecipitation assays in ESCC cells. Linc-ROR positively regulates the expression of MDM2 as a molecular sponge of miR-204-5p. Moreover, results of western blot and coimmunoprecipitation indicated that linc-ROR overexpression enhanced the ubiquitination level of p53, and its downstream apoptosis-related genes have showed higher bcl-2 expression, lower bax, and cleaved caspase-3 expressions, while miR-204-5p could counteract with this effect. Finally, small interfering RNAs tailored to linc-ROR were established to further evaluate its effects on ESCC comprehensively. In summary, this study revealed that linc-ROR modulated cell apoptosis and regulated p53 ubiquitination via targeting miR-204-5p/MDM2 axis, which provides a novel therapeutic insight into treatments for ESCC.  相似文献   

9.
Accumulating evidence indicates that microRNAs are implicated in tumor initiation and progression through negatively regulating oncogenes or tumor suppressor genes. In the present study, we report that the expression of miR-200a was significantly lower in renal cell carcinoma (RCC) specimens and RCC cell lines. Restoration of miR-200a suppressed cell growth, arrested cell cycle progression, and promoted cell apoptosis in RCC cell lines. We next used qRT-PCR array technology to identify Sirtuin 1 (SIRT1) as one of the downregulated proteins during miR-200a overexpression in 786-O cells. Following a further assay by luciferase reporter system, SIRT1 was validated as a direct target of miR-200a. Moreover, siRNA-mediated knockdown of SIRT1 could partially phenocopy the effects of miR-200a overexpression. In contrast, overexpression of truncated SIRT1 (without an endogenous 3′-UTR) could rescue the effect of miR-200a overexpression on 786-O cells, which suggested that SIRT1 3′-UTR is targeted by miR-200a specifically. These observations provide further evidence for a critical tumor-suppressive role of the miR-200a in RCC in addition to identifying a novel regulatory mechanism, which may contribute to SIRT1 upregulation in RCC.  相似文献   

10.
Rationale: MicroRNAs (miRNAs) are endogenous ~22nt RNAs that play critical regulatory roles in various biological and pathological processes, including various cancers. Their function in renal cancer has not been fully elucidated. It has been reported that miR-196a can act as oncogenes or as tumor suppressors depending on their target genes. However, the molecular target for miR-196a and the underlying mechanism in miR-196a promoted cell migration and invasion in renal cancer is still not clear.Methods: The expression, survival and correlation between miR-196a and BRAM1 were investigated using TCGA analysis and validated by RT-PCR and western blot. To visualize the effect of Bram1 on tumor metastasis in vivo, NOD-SCID gamma (NSG) mice were intravenously injected with RCC4 cells (106 cells/mouse) or RCC4 overexpressing Bram1. In addition, cell proliferation assays, migration and invasion assays were performed to examine the role of miR-196a in renal cells in vitro. Furthermore, immunoprecipitation was done to explore the binding targets of Bram1.Results: TCGA gene expression data from renal clear cell carcinoma patients showed a lower level of Bram1 expression in patients'' specimens compared to adjacent normal tissues. Moreover, Kaplan‑Meier survival data clearly show that high expression of Bram1correlates to poor prognosis in renal carcinoma patients. Our mouse metastasis model confirmed that Bram1 overexpression resulted in an inhibition in tumor metastasis. Target-prediction analysis and dual-luciferase reporter assay demonstrated that Bram1 is a direct target of miR-196a in renal cells. Further, our in vitro functional assays revealed that miR-196a promotes renal cell proliferation, migration, and invasion. Rescue of Bram1 expression reversed miR-196a-induced cell migration. MiR-196a promotes renal cancer cell migration by directly targeting Bram1 and inhibits Smad1/5/8 phosphorylation and MAPK pathways through BMPR1A and EGFR.Conclusions: Our findings thus provide a new mechanism on the oncogenic role of miR-196a and the tumor-suppressive role of Bram1 in renal cancer cells. Dysregulated miR-196a and Bram1 represent potential prognostic biomarkers and may have therapeutic applications in renal cancer.  相似文献   

11.
Epithelial–mesenchymal transition (EMT) has an important function in cancer. Recently, microRNAs have been reported to be involved in EMT by regulating target genes. miR-942 is considered a novel oncogene in esophageal squamous cell carcinoma. However, its role in non-small-cell lung cancer (NSCLC) has not been investigated. In this study, the expression of miR-942 in NSCLC patients tumor and paired adjacent tissues were assessed by quantitative real-time polymerase chain reaction and in situ hybridization. Transwell, wound healing, tube formation, and tail vein xenograft assays were conducted to assess miR-942′s function in NSCLC. Potential miR-942 targets were confirmed using dual-luciferase reporter assays, immunohistochemistry, immunoblot, and rescue experiments. The results showed miR-942 is relatively highly expressed in human NSCLC tissues and cells. In vitro assays demonstrated that overexpression of miR-942 promoted cell migration, invasion, and angiogenesis. Tail vein xenograft assays suggested that miR-942 contributed to NSCLC metastasis in vivo. Three bioinformatics software was searched, and BARX2 was predicted as a downstream target of miR-942. Direct interaction between them was validated by dual-luciferase assays. Rescue experiments further confirmed that BARX2 overexpression could reverse functional changes caused by miR-942. Moreover, miR-942 increased EMT-associated proteins N-cadherin and vimentin by inhibiting BARX2, while E-cadherin expression is reduced. In summary, this study reveals that miR-942 induces EMT-related metastasis by directly targeting BARX2, which may provide a potential therapeutic strategy for NSCLC.  相似文献   

12.
Renal cell carcinoma (RCC) is a lethal urinary malignancy. Circular RNAs (circRNAs) contribute to the malignant phenotype and progression of several types of human cancers, including RCC. In this study, we identified relatively low hsa_circ_0060927 (circCYP24A1) expression in RCC tissue through high-throughput sequencing and RT–qPCR. Fluorescence in situ hybridization (FISH) was used to validate the expression and subcellular localization of circCYP24A1 in RCC tissues. CCK-8, Transwell, EdU, and wound-healing assays indicated that circCYP24A1 overexpression inhibited the proliferation, invasion, and migration of RCC cells. Dual-luciferase reporter, RNA immunoprecipitation (RIP), FISH, and RNA-pulldown assays verified that circCYP24A1 inhibited RCC progression by sponging miR-421, thus inducing CMTM-4 expression. Xenograft assays and metastasis models further indicated that circCYP24A1 significantly inhibited the metastasis and proliferation of RCC cells in vivo. Taken together, circCYP24A1 is a prognosis-related circRNA in RCC that functions through the circCYP24A1/miR-421/CMTM-4 axis to modulate RCC progression.Subject terms: Renal cell carcinoma, Cancer metabolism  相似文献   

13.
14.
Accumulating evidence has shown that microRNAs are involved in multiple processes in gastric cancer (GC) development and progression. Aberrant expression of miR-497 has been frequently reported in cancer studies; however, the role and mechanism of its function in GC remains unknown. Here, we reported that miR-497 was frequently downregulated in GC tissues and associated with aggressive clinicopathological features of GC patients. Further in vitro observations showed that the enforced expression of miR-497 inhibited cell proliferation by blocking the G1/S transition and decreased the invasion of GC cells, implying that miR-497 functions as a tumor suppressor in the progression of GC. In vivo study indicated that restoration of miR-497 inhibited tumor growth and metastasis. Luciferase assays revealed that miR-497 inhibited eIF4E expression by targeting the binding sites in the 3′-untranslated region of eIF4E mRNA. qRT-PCR and Western blot assays verified that miR-497 reduced eIF4E expression at both the mRNA and protein levels. A reverse correlation between miR-497 and eIF4E expression was noted in GC tissues. Taken together, our results identify a crucial tumor suppressive role of miR-497 in the progression of GC and suggest that miR-497 might be an anticancer therapeutic target for GC patients.  相似文献   

15.
With the aid of next-generation sequencing technology, pseudogenes have been widely recognized as functional regulators in the development and progression of certain diseases, especially cancer. Our present study aimed to investigate the functions and molecular mechanisms of HSPB1-associated protein 1 pseudogene 1 (HSPB1P1) in renal cell carcinoma (RCC). HSPB1P1 expression at the mRNA levels was determined by quantitative real-time polymerase chain reaction, and its clinical significance was assessed. Cell viability was detected by Cell Counting Kit-8 assay. Cell migration and invasion were detected by transwell assays. The location of HSPB1P1 in RCC cells was detected by subcellular distribution analysis. The direct relationship between HSPB1P1 and miR-296-5p/HMGA1 axis was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Our results identify the elevated expression of HSPB1P1 in RCC tissues and cell lines, which predicted advanced progression and poor prognosis in patients with RCC. Knockdown of HSPB1P1 suppressed cell proliferation, migration, and invasion, and reversed epithelial–mesenchymal transition process in RCC. HSPB1P1 was mostly enriched in the cytoplasm and functioned as a miRNA sponge for miR-296-5p and then regulated high-mobility group A1 expression. In conclusion, our study indicated that HSPB1P1 contributed to RCC progression by targeting the miR-296-5p/HMGA1 axis, and should be considered as a promising biomarker and therapeutic target for clinical applications.  相似文献   

16.
The Raf kinase inhibitor protein (RKIP) is a tumor suppressor that protects against metastasis and genomic instability. RKIP is downregulated in many types of tumors, although the mechanism for this remains unknown. MicroRNAs silence target genes via translational inhibition or target mRNA degradation, and are thus important regulators of gene expression. In the current study, we found that miR-224 expression is significantly upregulated in breast cancer cell lines, and especially in highly invasive MDA-MB-231 cells, compared to human normal breast epithelial cells. In addition, miR-224 inhibits RKIP gene expression by directly targeting its 3'-untranslated region (3'-UTR). Moreover, metastasis, as assayed by Transwell migration, 3D growth in Matrigel, and wound healing, was enhanced by ectopic expression of miR-224 and inhibited by miR-224 downregulation. Promotion of metastasis in response to miR-224 downregulation was associated with derepression of the stroma-associated RKIP target genes, CXCR4, MMP1, and OPN, which are involved in breast tumor metastasis to the bone. Taken together, our data indicate that miR-224 play an important role in metastasis of human breast cancer cells to the bone by directly suppressing the RKIP tumor suppressor.  相似文献   

17.
MicroRNAs (miRNAs) are small endogenous, non-coding RNAs that specifically bind to the 3′ untranslated region (3′UTR) of target genes in animals. However, some recent studies have demonstrated that miRNAs also target the coding regions of mammalian genes. Here, we show that miRNA-181a downregulates the expression of a large number of zinc finger genes (ZNFs). Bioinformatics analysis revealed that these ZNFs contain many miR-181a seed-matched sites within their coding sequences (CDS). In particular, miR-181a 8-mer-matched sequences were mostly localized to the regions coding for the ZNF C2H2 domain. A series of reporter assays confirmed that miR-181a inhibits the expression of ZNFs by directly targeting their CDS. These inhibitory effects might be due to the multiple target sites located within the ZNF genes. In conclusion, our findings indicate that some miRNA species may regulate gene family by targeting their coding regions, thus providing an important and novel perspective for decoding the complex mechanism of miRNA/mRNA interplay.  相似文献   

18.
Esophageal squamous cell carcinoma (ESCC) is the eighth most prevalent cancer and the sixth leading cause for cancer-associated mortality. MicroRNAs (miRNAs) are increasingly reported to exert important regulatory functions in human cancers by regulating certain gene expression. miR-488-3p has been identified to be a tumor suppressor in multiple cancers, but its role in ESCC is yet to be investigated. The present study aimed to uncover the biological role and modulatory mechanism of miR-488-3p in ESCC. We first revealed the downregulation of miR-488-3p in ESCC tissues and cell lines. Gain-of-function assays confirmed that miR-488-3p overexpression abrogated proliferation and accelerated apoptosis. Mechanistically, we identified via bioinformatics tool and confirmed that zinc finger and BTB domain containing 2 (ZBTB2) was a target for miR-488-3p. Moreover, miR-488-3p activated the p53 pathway through suppressing ZBTB2. Finally, rescue assays proved that ZBTB2 was involved in the regulation of miR-488-3p on proliferation and apoptosis in ESCC. Additionally, we verified that miR-488-3p had alternate targets in ESCC by confirming the involvement of protein kinase, DNA-activated, catalytic subunit (PRKDC), a known target for miR-488-3p, in miR-488-3p-mediated regulation on ESCC. In sum, this study revealed that miR-488-3p inhibited proliferation and induced apoptosis by targeting ZBTB2 and activating p53 pathway in esophageal squamous cell carcinoma, providing a novel biological target for ESCC.  相似文献   

19.
冉茂良  董莲花  翁波  曹蓉  彭馥芝  高虎  罗荟  陈斌 《遗传》2018,40(7):572-584
睾丸组织中未成熟支持细胞的增殖能力决定成熟支持细胞的数量,进而制约成年雄性动物的精子生成能力。研究表明microRNA (miRNA)参与调控猪未成熟支持细胞的增殖和凋亡,但大部分鉴定出的miRNA功能仍不明确。本文基于前期RNA-seq数据筛选结果,研究了miR-362对猪未成熟支持细胞增殖和凋亡的调控作用。首先利用生物信息学方法预测miR-362的靶基因,通过qRT-PCR技术检测miR-362和ZNF644基因在不同发育阶段的猪睾丸组织中的表达水平以及在猪未成熟支持细胞中过表达或抑制表达miR-362后ZNF644基因的表达水平,采用双荧光素酶报告基因系统验证miR-362与ZNF644基因之间的靶向关系。结果显示,miR-362与ZNF644基因3′UTR具有一个潜在的结合位点,miR-362和ZNF644基因在猪睾丸组织中的mRNA表达水平显著负相关(r=-0.723, P<0.01),miR-362和psiCHECK2-ZNF644-WT 3′UTR共转染组的双荧光活性显著降低,且miR-362显著调节ZNF644基因的表达水平,表明miR-362靶向ZNF644基因并抑制其表达水平。为进一步检测过表达miR-362或抑制表达ZNF644基因对猪未成熟支持细胞增殖和凋亡的影响,通过流式细胞术检测细胞周期,CCK8和EdU试剂盒检测细胞增殖情况,Annexin V-FITC/PI方法和qRT-PCR技术检测细胞凋亡情况及凋亡相关基因的表达水平。结果表明,过表达miR-362后,猪未成熟支持细胞周期被阻滞在G1期,抑制表达ZNF644基因后,猪未成熟支持细胞被阻滞在G2期,细胞增殖能力显著减弱,细胞凋亡率显著提高,细胞凋亡相关基因呈促进凋亡的差异表达。本研究结果证实miR-362靶向ZNF644基因抑制猪未成熟支持细胞的增殖而促进其凋亡,为深入研究miR-362在猪精子生成过程中的生物学功能提供了理论基础。  相似文献   

20.
Genome-wide miRNA expression profile has identified microRNA (miR)-96 as one of upregulated miRNAs in clinical bladder cancer (BC) tissues compared to normal bladder tissues. The aim of this study was to confirm the expression pattern of miR-96 in BC tissues and to investigate its involvement in carcinogenesis. Quantitative real-time PCR was performed to detect the expression levels of miR-96 in 60 BC and 40 normal control tissues. Bioinformatics prediction combined with luciferase reporter assay were used to verify whether the cyclin-dependent kinase inhibitor CDKN1A was a potential target gene of miR-96. Cell counting kit-8 and apoptosis assays were further performed to evaluate the effects of miR-96-CDKN1A axis on cell proliferation and apoptosis of BC cell lines. We validated that miR-96 was significantly increased in both human BC tissues and cell lines. According to the data of miRTarBase, CDKN1A might be a candidate target gene of miR-96. In addition, luciferase reporter and Western blot assays respectively demonstrated that miR-96 could bind to the putative seed region in CDKN1A mRNA 3′UTR, and significantly reduce the expression level of CDKN1A protein. Moreover, we found that the inhibition of miR-96 expression remarkably decreased cell proliferation and promoted cell apoptosis of BC cell lines, which was consistent with the findings observed following the introduction of CDKN1A cDNA without 3′UTR restored miR-96. Our data reveal that miR-96 may function as an onco-miRNA in BC. Upregulation of miR-96 may contribute to aggressive malignancy partly through suppressing CDKN1A protein expression in BC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号