首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This study is carried out to investigate the role of microRNA-26a (miR-26a) in cartilage injury and chondrocyte proliferation and apoptosis in rats with rheumatoid arthritis (RA) by regulating expression of CTGF. A rat model of RA induced by type II collagen was established. The rats were assigned into normal, RA, RA + mimics negative control (NC), and RA + miR-26a mimics groups, and the cells were classified into blank, mimics NC, and miR-26a mimics groups. The degree of secondary joint swelling and arthritis index, expression of miR-26a, pathological changes, proliferation and apoptosis of chondrocytes, and expression of CTGF, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α, Bax, and Bcl-2 were also determined through a series of experiments. The targeting relationship between miR-26a and CTGF was verified. Initially, downregulated miR-26a was found in cartilage tissues and inflammatory articular chondrocytes of RA rats. In addition, CTGF was determined as a direct target gene of miR-26a, and upregulation of miR-26a inhibited CTGF expression in cartilage tissues of RA rats. Furthermore, upregulation of miR-26a reduced swelling and inflammation of joints, inhibited cartilage damage, apoptosis of chondrocytes, inflammatory injury, promotes proliferation, and inhibited apoptosis of inflammatory articular chondrocytes, which may be correlated with the targeting inhibition of CTGF expression. Collectively, the results demonstrate that upregulating the expression of miR-26a could attenuate cartilage injury, stimulate the proliferation, and inhibit apoptosis of chondrocytes in RA rats.  相似文献   

3.
4.
目的:探讨电针刺激对局灶性脑缺血大鼠内源性神经干细胞的激活作用以及对大鼠神经功能的影响。方法:将大鼠随机分为2组(n=20):单纯缺血组和电针刺激组。单纯缺血组大鼠建模成功后不给予任何干预,电针刺激组大鼠给予合谷、足三里电针刺激,然后免疫组化观察两组大鼠海马齿状回、侧脑室室下回神经干细胞的增殖和分化情况,以及两组大鼠神经功能的恢复。结果:电针刺激组大鼠侧脑室室下带、海马齿状回颗粒下层神经干细胞增殖活跃,数目多于单纯缺血组,差异有统计学意义(P〈0.05),神经功能评分改善好于单纯缺血组(P〈0.05)。结论:电针刺激能够促进局灶性脑缺血大鼠内源性神经干细胞的增生和分化,从而促进大鼠神经功能康复。  相似文献   

5.
Cell therapy has enormous potential to restore neurological function after stroke. The present study investigated effects of conditionally immortalised neural stem cells (ciNSCs), the Maudsley hippocampal murine neural stem cell line clone 36 (MHP36), on sensorimotor and histological outcome in mice subjected to transient middle cerebral artery occlusion (MCAO).Adult male C57BL/6 mice underwent MCAO by intraluminal thread or sham surgery and MHP36 cells or vehicle were implanted into ipsilateral cortex and caudate 2 days later. Functional recovery was assessed for 28 days using cylinder and ladder rung tests and tissue analysed for plasticity, differentiation and infarct size.MHP36-implanted animals showed accelerated and augmented functional recovery and an increase in neurons (MAP-2), synaptic plasticity (synaptophysin) and axonal projections (GAP-43) but no difference in astrocytes (GFAP), oligodendrocytes (CNPase), microglia (IBA-1) or lesion volumes when compared to vehicle group.This is the first study showing a potential functional benefit of the ciNSCs, MHP36, after focal MCAO in mice, which is probably mediated by promoting neuronal differentiation, synaptic plasticity and axonal projections and opens up opportunities for future exploitation of genetically altered mice for dissection of mechanisms of stem cell based therapy.  相似文献   

6.
Dexmedetomidine (Dex) possesses analgesic and anaesthetic values and reported being used in cerebral ischaemic injury therapeutics. Accumulating studies have determined the effect of microRNAs (miRNAs) on the cerebral ischaemic injury. Thus, the present study aimed to unravel the molecular mechanism of miR-381 and Dex in cerebral ischaemic injury. For this purpose, the cerebral ischaemic injury rat model was established by induction of middle cerebral artery occlusion (MCAO) and expression of miR-381 and IRF4 was determined. Thereafter, MCAO rats were treated with Dex, miR-381 mimic, miR-381 inhibitor and oe-IRF4 respectively, followed by evaluation of neurological function. Furthermore, neuron cells were isolated from the hippocampus of rats and subjected to oxygen-glucose deprivation (OGD). Then, OGD-treated neuron cells and primary neuron cells were examined by gain- and loss-of-function assay. Neuron cell apoptosis was detected using TUNEL staining and flow cytometry. The correlation between interferon regulatory factor 4 (IRF4) and interleukin (IL)-9 was detected. Our results showed down-regulated miR-38 and up-regulated IRF4 in MCAO rats. Besides, IRF4 was targeted by miR-381 in neuron cells. Dex and overexpressed miR-381, or silenced IRF4 improved the neurological function and inhibited neuron cell apoptosis in MCAO rats. Additionally, in MCAO rats, Dex was found to increase the miR-381 expression and reduced IRF4 expression to decrease the IL-9 expression, which suppressed the inflammatory response and cell apoptosis both in vivo and in vitro. Importantly, our study demonstrated that Dex elevated the expression of miR-381, which ultimately results in the inhibition of inflammation response in rats with cerebral ischaemic injury.  相似文献   

7.
8.
神经干细胞在治疗脑损伤中的应用   总被引:1,自引:0,他引:1  
神经干细胞(neural stem cells,NSCs)是中枢神经系统中既具有自我更新能力又能分化为神经系统各类细胞的细胞群。在体外一定条件下,NSCs能保持增殖能力,经定向诱导能分化为具有成熟神经细胞特征的各类细胞。NSCs移植治疗研究显示,植入的NSCs能分化为移植部位的神经细胞,并融入、整合该部位,重建受损神经网络,在一定程度上缓解病症。近年来,激活体内内源NSCs治疗神经损伤也逐渐得到广泛关注。因此,NSCs在治疗神经损伤中的应用研究已成为当前神经生物学基础理论和临床应用研究的热点。本文简要介绍了最近关于NSCs在治疗脑损伤中的应用研究进展。  相似文献   

9.
Stem cells are often transplanted with scaffolds for tissue regeneration; however, how the mechanical property of a scaffold modulates stem cell fate in vivo is not well understood. Here we investigated how matrix stiffness modulates stem cell differentiation in a model of vascular graft transplantation. Multipotent neural crest stem cells (NCSCs) were differentiated from induced pluripotent stem cells, embedded in the hydrogel on the outer surface of nanofibrous polymer grafts, and implanted into rat carotid arteries by anastomosis. After 3 months, NCSCs differentiated into smooth muscle cells (SMCs) near the outer surface of the polymer grafts; in contrast, NCSCs differentiated into glial cells in the most part of the hydrogel. Atomic force microscopy demonstrated a stiffer matrix near the polymer surface but much lower stiffness away from the polymer graft. Consistently, in vitro studies confirmed that stiff surface induced SMC genes whereas soft surface induced glial genes. These results suggest that the scaffold’s mechanical properties play an important role in directing stem cell differentiation in vivo, which has important implications in biomaterials design for stem cell delivery and tissue engineering.  相似文献   

10.
Mucopolysaccharidosis type II (MPSII or Hunter Syndrome) is a lysosomal storage disorder caused by the deficit of iduronate 2-sulfatase (IDS) activity and characterized by progressive systemic and neurological impairment. As the early mechanisms leading to neuronal degeneration remain elusive, we chose to examine the properties of neural stem cells (NSCs) isolated from an animal model of the disease in order to evaluate whether their neurogenic potential could be used to recapitulate the early phases of neurogenesis in the brain of Hunter disease patients. Experiments here reported show that NSCs derived from the subventricular zone (SVZ) of early symptomatic IDS-knockout (IDS-ko) mouse retained self-renewal capacity in vitro, but differentiated earlier than wild-type (wt) cells, displaying an evident lysosomal aggregation in oligodendroglial and astroglial cells. Consistently, the SVZ of IDS-ko mice appeared similar to the wt SVZ, whereas the cortex and striatum presented a disorganized neuronal pattern together with a significant increase of glial apoptotic cells, suggesting that glial degeneration likely precedes neuronal demise. Interestingly, a very similar pattern was observed in the brain cortex of a Hunter patient. These observations both in vitro, in our model, and in vivo suggest that IDS deficit seems to affect the late phases of neurogenesis and/or the survival of mature cells rather than NSC self-renewal. In particular, platelet-derived growth factor receptor-α-positive (PDGFR-α+) glial progenitors appeared reduced in both the IDS-ko NSCs and in the IDS-ko mouse and human Hunter brains, compared with the respective healthy controls. Treatment of mutant NSCs with IDS or PDGF throughout differentiation was able to increase the number of PDGFR-α+ cells and to reduce that of apoptotic cells to levels comparable to wt. This evidence supports IDS-ko NSCs as a reliable in vitro model of the disease, and suggests the rescue of PDGFR-α+ glial cells as a therapeutic strategy to prevent neuronal degeneration.  相似文献   

11.
《Cytotherapy》2014,16(6):810-820
Background aimsCerebral palsy (CP) is related to severe perinatal hypoxia with permanent brain damage in nearly 50% of surviving preterm infants. Cell therapy is a potential therapeutic option for CP by several mechanisms, including immunomodulation through cytokine and growth factor secretion.MethodsIn this phase I open-label clinical trial, 18 pediatric patients with CP were included to assess the safety of autologous bone marrow–derived total nucleated cell (TNC) intrathecal and intravenous injection after stimulation with granulocyte colony-stimulating factor. Motor, cognitive, communication, personal-social and adaptive areas were evaluated at baseline and 1 and 6 months after the procedure through the use of the Battelle Developmental Inventory. Magnetic resonance imaging was performed at baseline and 6 months after therapy. This study was registered in ClinicaTrials.gov (NCT01019733).ResultsA median of 13.12 × 108 TNCs (range, 4.83–53.87) including 10.02 × 106 CD34+ cells (range, 1.02–29.9) in a volume of 7 mL (range, 4–10.5) was infused intrathecally. The remaining cells from the bone marrow aspirate were administered intravenously; 6.01 × 108 TNCs (range, 1.36–17.85), with 3.39 × 106 cells being CD34+. Early adverse effects included headache, vomiting, fever and stiff neck occurred in three patients. No serious complications were documented. An overall 4.7-month increase in developmental age according to the Battelle Developmental Inventory, including all areas of evaluation, was observed (±SD 2.63). No MRI changes at 6 months of follow-up were found.ConclusionsSubarachnoid placement of autologous bone marrow–derived TNC in children with CP is a safe procedure. The results suggest a possible increase in neurological function.  相似文献   

12.
Embryonic stem cells (ESCs) are endowed with the ability to generate multiple cell lineages and carry great therapeutic potentials in regenerative medicine. Future application of ESCs in human health and diseases will embark on the delineation of molecular mechanisms that define the biology of ESCs. Here, we discuss how the finite ESC components mediate the intriguing task of brain development and exhibit biomedical potentials to cure diverse neurological disorders. Birth Defects Research (Part C) 87:182–191, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Background aimsPre-clinical evidence indicates that autologous bone marrow-derived mesenchymal stromal cell (BM-MSC) transplantation improves motor function in patients with central nervous system disorders.MethodsAfter providing informed consent, 52 patients with cerebral palsy (CP) who met the study criteria received BM-MSC transplantation. Gross motor function was assessed using the Gross Motor Function Measure (GMFM)-88 and GMFM-66 scales at baseline (before transplantation) and at 1 month, 6 months and 18 months post-transplantation. The participants completed the trial without visible side effects. The GMFM-66 percentile (motor growth curves) was used as the control index of motor function to exclude the interference of improvement with age.ResultsThe score domains A, B, C and D and the total GMFM-88 and GMFM-66 scores in participants increased at 1 month, 6 months and 18 months post-transplantation compared with the baseline value (P < 0.01). The scores of domain E also increased at 6 months and 18 months post-transplantation, although they were not significantly increased at 1 month post-transplantation. There were significant increases in the GMFM-66 score and the GMFM-66 percentile corresponding to patient age and Gross Motor Function Classification System level after cell transplantation.ConclusionsAutologous BM-MSC transplantation appears to be a feasible, safe and effective therapy for patients with CP. The treatment improved the development of children with CP with regard to motor function.  相似文献   

14.
15.
16.
Sun Y  Shi J  Fu SL  Lu PH  Xu XM 《生理学报》2003,55(3):349-354
将胚胎神经干细胞(neural stem cells,NSCs)移植至成年大鼠损伤的脊髓,观察移植后NSCs的存活、迁移以及损伤后的功能恢复。实验结果显示:动物NSCs移植4周后,斜板实验平均角度和运动评分结果比对照组均有明显增高(P<0.05),而脊髓损伤(spinal cord injury,SCI)处的空洞面积显著减小(P<0.05);在NSCs中加入胶质细胞源性的神经营养因子(glial cell line-derived neurotrophic factor,GDNF)后,上述改变更加显著。移植后的NSCs不仅能存活,而且向损伤的头端和尾端迁移达3mm之远。这些结果表明,移植的NSCs不仅可以存活、迁移,还可减小SCI空洞面积,促进动物神经功能的恢复;此外,我们的结果还表明GDNF对SCI功能恢复有促进作用。  相似文献   

17.
Cui HL  Qiao JT 《生理学报》2007,59(6):759-764
本研究用免疫细胞化学荧光双标技术观察了溶血磷脂酸(lysophosphatidic acid,LPA)对大鼠胚胎神经干细胞(neural stem cells,NSCs)分化为少突胶质细胞(galactocerebroside—positive,Gal-C阳性)和星形胶质细胞(grim fibrillary acidic protein-positive,GFAP阳性)的影响,并且用RT-PCR技术对NSCs可能表达的LPA受体进行分析。结果显示:(1)加入不同浓度(0.010.0μmol/L)LPA,第7天进行检测时,少突胶质细胞数量呈明显的剂量依赖性增加,峰值出现在1.0μmol/LLPA组,少突胶质细胞所占百分比从对照组的8.5%增加到32.6%;(2)星形胶质细胞的分化几乎不受LPA的影响,第7天时各LPA处理组星形胶质细胞百分比与对照组相比均无显著性差异;(3)RT-PCR结果显示,大鼠胚胎NSCs的LPA1和LPA3受体表达明显,而LPA3受体表达很弱。以上结果表明,较低浓度的LPA可能作为细胞外信号,通过LPA1和LPA3受体促进大鼠胚胎NSCs向少突胶质细胞分化和生成,但对星形胶质细胞的分化过程无明显影响。  相似文献   

18.
Cell culture of human-derived neural stem cells (NSCs) is a useful tool that contributes to our understanding of human brain development and allows for the development of therapies for intractable human brain disorders. Human NSC (hNSC) cultures, however, are not commonly used, mainly because of difficulty with consistently maintaining the cells in a healthy state. In this study, we show that hNSC cultures, unlike NSCs of rodent origins, are extremely sensitive to insulin, an indispensable culture supplement, and that the previously reported difficulty in culturing hNSCs is likely because of a lack of understanding of this relationship. Like other neural cell cultures, insulin is required for hNSC growth, as withdrawal of insulin supplementation results in massive cell death and delayed cell growth. However, severe apoptotic cell death was also detected in insulin concentrations optimized to rodent NSC cultures. Thus, healthy hNSC cultures were only produced in a narrow range of relatively low insulin concentrations. Insulin-mediated cell death manifested not only in all human NSCs tested, regardless of origin, but also in differentiated human neurons. The underlying cell death mechanism at high insulin concentrations was similar to insulin resistance, where cells became less responsive to insulin, resulting in a reduction in the activation of the PI3K/Akt pathway critical to cell survival signaling.  相似文献   

19.
During development of the mammalian cerebral cortex neural stem cells (NSC) first generate neurons and subsequently produce glial cells. The mechanism(s) responsible for this developmental shift from neurogenesis to gliogenesis is unknown. Brain-derived neurotrophic factor (BDNF) is believed to play important roles in the development of the mammalian cerebral cortex; it enhances neurogenesis and promotes the differentiation and survival of newly generated neurons. Here, we provide evidence that a truncated form of the BDNF receptor tyrosine kinase B (trkB-t) plays a pivotal role in directing embryonic mouse cortical NSC to a glial cell fate. Expression of trkB-t promotes differentiation of NSC toward astrocytes while inhibiting neurogenesis both in cell culture and in vivo. The mechanism by which trkB-t induces astrocyte genesis is not simply the result of inhibition of full-length receptor with intrinsic tyrosine kinase activity signaling. Instead, binding of BDNF to trkB-t activates a signaling pathway (involving a G-protein and protein kinase C) that induced NSC to become glial progenitors and astrocytes. Thus, the increased expression of trkB-t in the embryonic cerebral cortex that occurs coincident with astrocyte production plays a pivotal role in the developmental transition from neurogenesis to gliogenesis. Our findings suggest a mechanism by which a single factor (BDNF) regulates the production of the two major cell types in the mammalian cerebral cortex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号