首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long noncoding RNAs (lncRNAs) have been involved in the pathogenesis of several human cancers including gastric cancer. In the current study, we selected five lncRNAs namely NEAT1, TUG1, PANDA, UCA1, and GHET1 to assess their expressions in gastric cancer samples compared with adjacent noncancerous tissues (ANCTs) from the same patients. Some previous reports have shown contribution of these lncRNAs in gastric cancer. However, we aimed to explore their associations with patients’ clinicopathological data and their potential as diagnostic biomarkers. Significant associations were found between site of primary tumor and relative expression of all lncRNAs in cancer samples compared with ANCTs. Besides, GHET1 relative expression was associated with lymph node status. The diagnostic power of GHET1 was higher from other lncRNAs. Combination of GHET1, TUG1, UCA1, and PANDA increased the diagnostic power and significance (AUC = 0.8; P < 0.0001). The current study supports participation of lncRNAs in the pathogenesis of gastric cancer and highlights their potential as diagnostic biomarkers.  相似文献   

2.
Esophageal cancer is the seventh most common cancer worldwide. Although a number of environmental and lifestyle-related risk factors have been identified for this kind of cancer, the exact molecular mechanisms of tumor evolution have not been clarified yet. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) as important regulators of gene expression and chromatin configuration have essential roles in the pathogenesis of esophageal cancer. They have been shown to alter the function of cancer-related signaling pathways such as phosphoinositide 3-kinase/protein kinase B and Wnt pathway, thus they might modulate the response of patients to pathway-targeted therapies. Moreover, a number of lncRNAs, such as AFAP1-AS1, UCA1, HOTAIR, LOC285194, and TUSC7, are involved in conferring chemoresistant/radioresistant in esophageal cancer cells. A complex network of interaction exists between lncRNAs and miRNAs in the context of esophageal cancer. Finally, various panels of lncRNAs and miRNAs have been introduced that can predict the survival of esophageal cancer patients. In this review article, we summarize the recent findings regarding the role of miRNAs and lncRNAs in the pathogenesis of esophageal cancer with the special focus on their regulatory roles on signaling pathways, their potential as diagnostic/prognostic markers, and their relevance with therapeutic response.  相似文献   

3.
Accumulating evidence has indicated that deregulation of lncRNAs plays essential roles in colorectal cancer (CRC) carcinogenesis. The goal of this study was to analyze the expression of lncRNAs in colorectal cancer and their association with clinicopathological variables. Bioinformatics analysis of published CRC microarray data was performed to identify the important lncRNAs. The expression levels of candidate genes were assessed in the human colon cancer/normal cell lines, CRC, adenomatous colorectal polyps, and their marginal tissues by qRT-PCR. Moreover, the methylation status of the TRPM2-AS1 promoter was studied using qMSP assay. Furthermore, we investigated the molecular mechanisms of these lncRNAs in CRC progression using in silico analysis. Microarray analysis revealed that lncRNAs SNHG6, MIR4435-2HG, and TRPM2-AS1 were upregulated in CRC. These results were validated in colon cell lines. Moreover, qRT-PCR showed that the expression levels of SNHG6 and TRPM2-AS1 were upregulated in the colorectal tumor tissues compared with their paired tissues. Nonetheless, there was no significant increase in MIR4435-2HG expression in CRC samples. Furthermore, we observed a significant hypomethylation of TRPM2-AS1 promoter and its activation in CRC tissues. By in silico analysis, we found that the lncRNAs upregulation could promote proliferation and drug resistance of colorectal cancer cells via miRNAs sponging and modulation of their targets expression. In conclusion, based on our results upregulation of SNHG6 and TRPM2-AS1, and hypomethylation of TRPM2-AS1 promoter might be considered as potential diagnostic biomarkers for CRC initiation and development.  相似文献   

4.
5.
6.
7.
8.
The early detection of lung cancer is a major clinical challenge. Long noncoding RNAs (lncRNAs) have important functions in tumorigenesis. Plasma lncRNAs directly released from primary tumors or the circulating cancer cells might provide cell-free cancer biomarkers. The objective of this study was to investigate whether the lncRNAs could be used as plasma biomarkers for early-stage lung cancer. By using droplet digital polymerase chain reaction, we determined the diagnostic performance of 26 lung cancer–associated lncRNAs in plasma of a development cohort of 63 lung cancer patients and 33 cancer-free individuals, and a validation cohort of 39 lung cancer patients and 28 controls. In the development cohort, 7 of the 26 lncRNAs were reliably measured in plasma. Two (SNHG1 and RMRP) displayed a considerably high plasma level in lung cancer patients vs. cancer-free controls (all P?<?.001). Combined use of the plasma lncRNAs as a biomarker signature produced 84.13% sensitivity and 87.88% specificity for diagnosis of lung cancer, independent of stage and histological type of lung tumor, and patients' age and sex (all P?>?.05). The diagnostic value of the plasma lncRNA signature for lung cancer early detection was confirmed in the validation cohort. The plasma lncRNA signature may provide a potential blood-based assay for diagnosing lung cancer at the early stage. Nevertheless, a prospective study is warranted to validate its clinical value.  相似文献   

9.
BackgroundGastric cancer (GC) is one of the most common cancers worldwide and the majority of GC patients are diagnosed at advanced stages due to the lack of early detection biomarkers. LncRNAs have been shown to play important roles in various diseases and could be predictive biomarkers and therapeutic targets. Our study demonstrated that low expression of lncRNA APTR could promote gastric cancer progression.MethodsDifferentiated expressed lncRNAs were identified through analyzing TCGA paired GC RNA sequencing data. LncRNA APTR's clinical relevance was analyzed using the TCGA dataset and GEO datasets. APTR expression in patient samples was detected through qPCR. The proliferation, colony formation, and migration of GC cells were tested. Bioinformatic analyses were performed to explore APTR-affected signaling pathways in GC.ResultsLncRNA APTR is lower expressed in gastric tumor samples and low expression of APTR predicts a poor diagnosis and outcome in GC patients. Silencing APTR promotes gastric cancer proliferation and invasiveness. APTR expression is negatively correlated with inflammatory signaling in the gastric tumor microenvironment.ConclusionOur study showed that low expression of lncRNA APTR in gastric cancer is correlated with tumorigenesis and poor diagnosis and prognosis, which is a potential biomarker for gastric cancer patients' diagnosis and treatment.  相似文献   

10.
11.
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, and the 5‐year survival rate was only 7.7%. To improve prognosis, a screening biomarker for early diagnosis of pancreatic cancer is in urgent need. Long non‐coding RNA (lncRNA) expression profiles as potential cancer prognostic biomarkers play critical roles in development of tumorigenesis and metastasis of cancer. However, lncRNA signatures in predicting the survival of a patient with PDAC remain unknown. In the current study, we try to identify potential lncRNA biomarkers and their prognostic values in PDAC. LncRNAs expression profiles and corresponding clinical information for 182 cases with PDAC were acquired from The Cancer Genome Atlas (TCGA). A total of 14 470 lncRNA were identified in the cohort, and 175 PDAC patients had clinical variables. We obtained 108 differential expressed lncRNA via R packages. Univariate and multivariate Cox proportional hazards regression, lasso regression was performed to screen the potential prognostic lncRNA. Five lncRNAs have been recognized to significantly correlate with OS. We established a linear prognostic model of five lncRNA (C9orf139, MIR600HG, RP5‐965G21.4, RP11‐436K8.1, and CTC‐327F10.4) and divided patients into high‐ and low‐risk group according to the prognostic index. The five lncRNAs played independent prognostic biomarkers of OS of PDAC patients and the AUC of the ROC curve for the five lncRNAs signatures prediction 5‐year survival was 0.742. In addition, targeted genes of MIR600HG, C9orf139, and CTC‐327F10.4 were explored and functional enrichment was also conducted. These results suggested that this five‐lncRNAs signature could act as potential prognostic biomarkers in the prediction of PDAC patient's survival.  相似文献   

12.
Lung cancer‐associated mortality is the most common cause of cancer death worldwide. Non‐coding RNAs (ncRNAs), with no protein‐coding ability, have multiple biological roles. Long non‐coding RNAs (lncRNAs) are a recently characterized class of ncRNAs that are over 200 nucleotides in length. Many lncRNAs have the ability of facilitating or inhibiting the development and progression of tumours, including non‐small cell lung cancer (NSCLC). Because of their fundamental roles in regulating gene expression, along with their involvement in the biological mechanisms underlying tumourigenesis, they are a promising class of tissue‐ and/or blood‐based cancer biomarkers. In this review, we highlight the emerging roles of lncRNAs in NSCLC, and discuss their potential clinical applications as diagnostic and prognostic markers and as therapeutic targets.  相似文献   

13.
Currently, traditional predictors of prognosis (tumor size, nodal status, progesterone receptor [PR], estrogen receptor [ER], or human epidermal growth factor receptor-2 [HER2]) are insufficient for precise survival prediction for triple-negative breast cancer (TNBC). Long noncoding RNAs (lncRNAs) have been observed to exert critical functions in cancer, including in TNBC. Nevertheless, systematically tracking expression-based lncRNA biomarkers based on the sequence data for the prediction of prognosis in TNBC has not yet been investigated. To ascertain whether biomarkers exist that can distinguish TNBC from adjacent normal tissue or nTNBC, we implemented a comprehensive analysis of lncRNA expression profiles and clinical data of 1097 BC samples from The Cancer Genome Atlas database. A total of 1510 differentially expressed lncRNAs in normal and TNBC samples were extracted. Similarly, 672 differentially expressed lncRNAs between nTNBC and TNBC samples were detected. The receiver operating characteristic curve analysis indicated that three upregulated lncRNAs (AC091043.1, AP000924.1, and FOXCUT) may be of strong diagnostic value for predicting the existence of TNBC in the training and validation sets (area under the curve (AUC > 0.85). Kaplan-Meier analysis demonstrated that the other three lncRNAs (AC010343.3, AL354793.1, and FGF10-AS1) were associated with the prognosis of TNBC patients (P < 0.05). We used the three overall survival (OS)-related lncRNAs to establish a three-lncRNA signature. Multivariate Cox regression analysis suggested that the three-lncRNA signature was a prognostic factor independent of other clinical variables ( P < 0.01) for predicting OS in TNBC patients that could be utilized to classify patients into high- or low-risk subgroups. Our results might provide efficient signatures for clinical diagnosis and prognostic evaluation of TNBC.  相似文献   

14.
BackgroundmiR-20a is a critical molecule in various biological processes and cancer progression procedures. However, its relationships with lncRNAs and their functional pathway analysis in breast tumorigenesis are less intensively studied.MethodsThe expression data from TCGA database and multiple bioinformatics resources were used to check the expression levels, survival curves, interactions and functional illustrations of miR-20a and its related lncRNAs (XIST, H19 and MALAT1) in breast cancer patients. The luciferase reporter assays and Pearson's correlation analyses were utilized to verify the direct regulatory relationship between miR-20a and three lncRNAs (XIST, H19 and MALAT1). In vitro cell proliferation, migration and invasion assays, were performed to check the biological effects of miR-20a and XIST in different breast cancer cell lines. The receiver operating characteristic curve (ROC) analyses were done for evaluating diagnostic values of serum miR-20a and XIST in breast cancer patients.ResultsThe miR-20a expression was significantly up-regulated in both breast cancer samples and serum samples, and correlated with poor survival rate in breast cancer patients. LncRNAs (XIST, H19 and MALAT1) directly bound to hsa-miR-20a and were negatively correlated with hsa-miR-20a expression in breast cancer patient samples. For functional illustrations and downstream signaling pathways analysis, XIST, H19 and MALAT1 mainly shared their regulatory functions in cell motility and interleukin signaling in breast cancer progression. Additionally, over-expression of miR-20a and inhibition of XIST promoted breast cancer cell growth, migration and invasion in vitro, and serum miR-20a and XIST served as potential diagnostic biomarkers for breast cancer with the area under ROC curve (AUC) of 0.87 (95% CI = 0.78 to 0.97), and 0.78 (95% CI = 0.67 to 0.89) respectively.ConclusionsTaken together, these findings provide us novel insights and avenues for utilizing miR-20a and its related lncRNAs as potential diagnostic biomarkers and promising therapeutic targets for breast cancer treatment.  相似文献   

15.
16.
17.
The digestive system cancers are leading cause of cancer‐related death worldwide, and have high risks of morbidity and mortality. More and more long non‐coding RNAs (lncRNAs) have been studied to be abnormally expressed in cancers and play a key role in the process of digestive system tumour progression. Plasmacytoma variant translocation 1 (PVT1) seems fairly novel. Since 1984, PVT1 was identified to be an activator of MYC in mice. Its role in human tumour initiation and progression has long been a subject of interest. The expression of PVT1 is elevated in digestive system cancers and correlates with poor prognosis. In this review, we illustrate the various functions of PVT1 during the different stages in the complex process of digestive system tumours (including oesophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma and pancreatic cancer). The growing evidence shows the involvement of PVT1 in both proliferation and differentiation process in addition to its involvement in epithelial to mesenchymal transition (EMT). These findings lead us to conclude that PVT1 promotes proliferation, survival, invasion, metastasis and drug resistance in digestive system cancer cells. We will also discuss PVT1's potential in diagnosis and treatment target of digestive system cancer. There was a great probability PVT1 could be a novel biomarker in screening tumours, prognosis biomarkers and future targeted therapy to improve the survival rate in cancer patients.  相似文献   

18.
Despite progress in diagnostics and treatment for preeclampsia, it remains the foremost cause of maternal and foetal perinatal morbidity and mortality worldwide. Over recent years, various lines of evidence have emphasized long non‐coding RNAs (lncRNAs) which function as an innovative regulator of biological behaviour, as exemplified by proliferation, apoptosis and metastasis. However, the role of lncRNAs has not been well described in preeclampsia. Here, we identified a lncRNA, PVT1, whose expression was down‐regulated in qRT‐PCR analyses in severe preeclampsia. The effects of PVT1 on development were studied after suppression and overexpression of PVT1 in HTR‐8/SVneo and JEG3 cells. PVT1 knockdown notably inhibited cell proliferation and stimulated cell cycle accumulation and apoptosis. Exogenous PVT1 significantly increased cell proliferation. Based on analysis of RNAseq data, we found that PVT1 could affect the expression of numerous genes, and then investigated the function and regulatory mechanism of PVT1 in trophoblast cells. Further mechanistic analyses implied that the action of PVT1 is moderately attributable to its repression of ANGPTL4 via association with the epigenetic repressor Ezh2. Altogether, our study suggests that PVT1 could play an essential role in preeclampsia progression and probably acts as a latent therapeutic marker; thus, it might be a useful prognostic marker when evaluating new therapies for patients with preeclampsia.  相似文献   

19.
Gastric cancer (GC) is the fifth most frequent cancer and the third-leading cause of cancer-related death worldwide. It is a highly heterogeneous disease regarding the morphological and molecular viewpoints. Since it is curable in primary stages, early detection could improve the survival rate. Long noncoding RNAs contribute to a variety of cellular mechanisms, and their dysregulation is reported in various diseases such as cancer. Thus, they have a great potential to be used as diagnostic and prognostic biomarkers and therapeutic targets as well. In the current study, ANRIL and ANRASSF1 expression levels were compared between GC tumors and the adjacent normal tissues collected from 39 Iranian patients using the quantitative real-time polymerase chain reaction method. Correlation between ANRIL and ANRASSF1 expression levels and other clinical parameters was also evaluated. ANRIL and ANRASSF1 were significantly overexpressed in GC tumors compared with adjacent tissues ( P < 0.0001 and P = 0.001, respectively). No significant correlation between ANRIL and ANRASSF1 expression levels and demographic information was found. This study suggests that ANRIL and ANRASSF1 may play a critical role in GC progression and can be considered as a potential diagnostic or therapeutics biomarkers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号