首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Cell communication through extracellular vesicles (EVs) has been defined for many years and it is not limited only to neighboring cells, but also distant ones in organisms receive these signals. These vesicles are secreted from the variety of cells and are composed of a distinctive component such as proteins, lipids, and nucleic acids. EVs have different classified subgroups regarding their cell origin, in this context, exosomes are the most appealing particles in cell biology, especially clinical in recent years and are represented as novel therapeutic agents with numerous advantages alongside and/or over cell therapy. However, cell therapy had a hopeful outcome in gastrointestinal diseases which have minimal alternatives in their treatments. Inflammatory bowel disease (IBD), liver fibrosis, gastrointestinal cancers are the examples that cell therapy and immunotherapy were applied in their treatment, therefore, the cell products like exosomes are the beneficial option in their treatment even cancers with promising results in animal models. In this review, we consider the main defined biogenesis, function, and component of secreted exosomes in different cells with a specific focus on the potential application of these exosomes as a cell-free therapeutic approach in gastrointestinal diseases like IBD, gastric cancer, and colon cancer. Additionally, exosomes role as therapeutic reagents mainly mesenchymal stem cells and dendritic cell-derived exosomes in different studies have been under intense investigation and even they are being studied in different clinical trials. Therefore, all these striking functions described for secretome implies the importance of these biocarriers.  相似文献   

2.
Proteins involved in the organizing of lipid rafts can be found in exosomes, as shown for caveolin‐1, and they could contribute to exosomal cargo sorting, as shown for flotillins. Stomatin belongs to the same stomatin/prohibitin/flotillin/HflK/C family of lipid rafts proteins, but it has never been studied in exosomes except for extracellular vesicles (EVs) originating from blood cells. Here we first show the presence of stomatin in exosomes produced by epithelial cancer cells (non–small cell lung cancer, breast, and ovarian cancer cells) as well as in EVs from biological fluids, including blood plasma, ascitic fluids, and uterine flushings. A high abundance of stomatin in EVs of various origins and its enrichment in exosomes make stomatin a promising exosomal marker. Comparison with other lipid raft proteins and exosomal markers showed that the level of stomatin protein in exosomes from different sources corresponds well to that of CD9, while it differs essentially from flotillin‐1 and flotillin‐2 homologs, which in turn are present in exosomes in nearly equal proportions. In contrast, the level of vesicular caveolin‐1 as well as its EV‐to‐cellular ratio vary drastically depending on cell type.  相似文献   

3.
Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment.  相似文献   

4.
BackgroundMultidrug resistance (MDR) is a serious impediment to cancer treatment, with overexpression of drug efflux pumps such as P-glycoprotein (P-gp) playing a significant role. In spite of being a major clinical challenge, to date there is no simple, minimally invasive and clinically validated method for diagnosis of the MDR phenotype using non-tumour biological samples. Recently, P-gp has been found in extracellular vesicles (EVs) shed by MDR cancer cells. This study aimed to compare the EVs shed by MDR cells and their drug-sensitive cellular counterparts, in order to identify biomarkers of MDR.MethodsTwo pairs of MDR and drug-sensitive counterpart tumour cell lines were studied as models. EVs were characterized in terms of size and molecular markers and their protein content was investigated by proteomic analysis and Western blot.ResultsWe found that MDR cells produced more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart. EVs from MDR cells contained P-gp and presented a different content of proteins known to be involved in the biogenesis of EVs, particularly in the biogenesis of exosomes.ConclusionsThe determination of the size and of this particular protein content of EVs shed by tumour cells may allow the development of a minimally-invasive simple method of detecting and predicting MDR.General significanceThis work describes for the first time that cancer multidrug resistant cells shed more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart cells, carrying a specific content of proteins involved in EV biogenesis that could be further studied as biomarkers of MDR.  相似文献   

5.
Extracellular vesicles (EVs) either as endocytic or plasma membrane-emerged vesicles play pivotal role in cell-to-cell communication. Due to the bioactive molecules transformation, lymphoma cell-derived vesicles can alter a recipient cell's function and contribute to signal transduction and drug resistance. These vesicles by acting not only in tumor cells but also in tumor-associated cells have important roles in tumor growth and invasion. On the other hand, the total protein level of circulating exosomes reveals the disease stage, tumor burden, response to therapy, and survival. In residual disease, leukemic blasts are undetectable in the bone marrow by conventional methods but exosomal proteins are elevated significantly. In this manner, new methods for measuring exosomes and exosomal components are required. In this review, we try to reveal the concealed role of EVs in hematological malignancies besides therapeutic potentials.  相似文献   

6.
Extracellular vesicles (EVs), including exosomes, have a key role in the paracrine communication between organs and compartments. EVs shuttle virtually all types of biomolecules such as proteins, lipids, nucleic acids, metabolites and even pharmacological compounds. Their ability to transfer their biomolecular cargo into target cells enables EVs to play a key role in intercellular communication that can regulate cellular functions such as proliferation, apoptosis and migration. This has led to the emergence of EVs as a key player in tumor growth and metastasis through the formation of “tumor niches” in target organs. Recent data have also been shown that EVs may transform the microenvironment of primary tumors thus favoring the selection of cancer cells with a metastatic behavior. The release of EVs from resident non-malignant cells may contribute to the metastatic processes as well. However, cancer EVs may induce malignant transformation in resident mesenchymal stem cells, suggesting that the metastatic process is not exclusively due to circulating tumor cells. In this review, we outline and discuss evidence-based roles of EVs in actively regulating multiple steps of the metastatic process and how we can leverage EVs to impair metastasis.  相似文献   

7.
Extracellular vesicles (EVs) are nano-sized vesicles, released from many cell types including cardiac cells, have recently emerged as intercellular communication tools in cell dynamics. EVs are an important mediator of signaling within cells that influencing the functional behavior of the target cells. In heart complex, cardiac cells can easily use EVs to transport bioactive molecules such as proteins, lipids, and RNAs to the regulation of neighboring cell function. Cross-talk between intracardiac cells plays pivotal roles in the heart homeostasis and in adaptive responses of the heart to stress. EVs were released by cardiomyocytes under baseline conditions, but stress condition such as hypoxia intensifies secretome capacity. EVs secreted by cardiac progenitor cells and cardiosphere-derived cells could be pinpointed as important mediators of cardioprotection and cardiogenesis. Furthermore, EVs from many different types of stem cells could potentially exert a therapeutic effect on the damaged heart. Recent evidence shows that cardiac-derived EVs are rich in microRNAs, suggesting a key role in the controlling of cellular processes. EVs harboring exosomes may be clinically useful in cell-free therapy approaches and potentially act as prognosis and diagnosis biomarkers of cardiovascular diseases.  相似文献   

8.
9.
Extracellular vesicles (EVs), mainly exosomes and microvesicles, are bilayer lipids containing biologically active information, including nucleic acids and proteins. They are involved in cell communication and signalling, mediating many biological functions including cell growth, migration and proliferation. Recently, EVs have received great attention in the field of tissue engineering and regenerative medicine. Many in vivo and in vitro studies have attempted to evaluate the chondrogenesis potential of these microstructures and their roles in cartilage regeneration. EVs derived from mesenchymal stem cells (MSCs) or chondrocytes have been found to induce chondrocyte proliferation and chondrogenic differentiation of stem cells in vitro. Preclinical studies have shown that exosomes derived from MSCs have promising results in cartilage repair and in cell-free therapy of osteoarthritis. This review will focus on the in vitro and in vivo chondrogenesis and cartilage regeneration of EVs as well as their potential in the treatment of osteoarthritis.  相似文献   

10.
Backspliced circular RNAs (circRNAs) are prevalent in many eukaryotic systems and are spliced from thousands of different genes. Where examined, circRNAs are often highly stable and the mechanisms by which cells degrade and/or clear circRNAs from the cells are unknown. Here we investigated the possibility that cells can eliminate circRNAs into extracellular space, possibly within released vesicles such as exosomes and microvesicles. From three different cell lines and examining multiple circRNAs, we show that extracellular vesicle (EVs) preparations recovered from cell culture conditioned media contain established circRNAs. Moreover, these circRNAs are enriched over their linear counterparts within EV preparations when compared to the producing cells. This supports the idea that expulsion from cells into extracellular space, as by EVs release, can be a mechanism by which cells clear circRNAs. Moreover, since EVs can be taken up by other cells, excreted circRNAs could contribute to cell to cell communication.  相似文献   

11.
Extracellular vesicles (EVs) released from different types of kidney cells under physiologic conditions contribute to homeostasis maintenance, immune-modulation, and cell-to-cell communications. EVs can also negatively affect the progression of renal diseases through their pro-inflammatory, pro-fibrotic, and tumori-genic potential. Inhibiting EVs by blocking their production, release, and uptake has been suggested as a potential therapeutic mechanism based on the significant implication of exosomes in various renal diseases. On the other hand, stem cell-derived EVs can ameliorate tissue injury and mediate tissue repair by ameliorating apoptosis, inflammation, and fibrosis while promoting angiogenesis and tubular cell proliferation. Recent advancement in biomedical engineering technique has made it feasible to modulate the composition of exosomes with diverse biologic functions, making EV one of the most popular drug delivery tools. The objective of this review was to provide updates of recent clinical and experimental findings on the therapeutic potential of EVs in renal diseases and discuss the clinical applicability of EVs in various renal diseases.  相似文献   

12.
Extracellular vesicles (EVs), a heterogeneous group of vesicles differing in size and shape, cargo content and function, are membrane‐bound and nano‐sized vesicles that could be released by nearly all variations of cells. EVs have gained considerable attention in the past decades for their functions in modulating intercellular signalling and roles as potential pools for the novel diagnostic and prognostic biomarkers, as well as therapeutic targets in several cancers including urological neoplasms. In general, human and animal cells both can release distinct types of EVs, including exosomes, microvesicles, oncosomes and large oncosomes, and apoptotic bodies, while the content of EVs can be divided into proteins, lipids and nucleic acids. However, the lack of standard methods for isolation and detection platforms rein the widespread usage in clinical applications warranted furthermore investigations in the development of reliable, specific and sensitive isolation techniques. Whether and how the EVs work has become pertinent issues. With the aid of high‐throughput proteomics or genomics methods, a fully understanding of contents contained in EVs from urogenital tumours, beyond all doubt, will improve our ability to identify the complex genomic alterations in the process of cancer and, in turn, contribute to detect potential therapeutic target and then provide personalization strategy for patient.  相似文献   

13.
Aggressive epithelial cancer cells frequently adopt mesenchymal characteristics and exhibit aberrant interactions with their surroundings, including the vasculature. Whether the release/uptake of extracellular vesicles (EVs) plays a role during these processes has not been studied. EVs are heterogeneous membrane structures that originate either at the surface (microparticles), or within (exosomes) activated or transformed cells, and are involved in intercellular trafficking of bioactive molecules. Here, we show that epithelial cancer cells (A431, DLD-1) adopt mesenchymal features (epithelial-to-mesenchymal transition-like state) upon activation of epidermal growth factor receptor (EGFR) coupled with blockade of E-cadherin. This treatment leads to a coordinated loss of EGFR and tissue factor (TF) from the plasma membrane and coincides with a surge in emission of small, exosome-like EVs containing both receptors. TF (but not EGFR) is selectively up-regulated in EVs produced by mesenchymal-like cancer cells and can be transferred to cultured endothelial cells rendering them highly procoagulant. We postulate that epithelial-to-mesenchymal transition-like changes may alter cancer cell interactions with the vascular systems through altered vesiculation and TF shedding.  相似文献   

14.
Various mammalian cells including tumor cells secrete extracellular vesicles (EVs), otherwise known as exosomes and microvesicles. EVs are nanosized bilayered proteolipids and play multiple roles in intercellular communication. Although many vesicular proteins have been identified, their functional interrelationships and the mechanisms of EV biogenesis remain unknown. By interrogating proteomic data using systems approaches, we have created a protein interaction network of human colorectal cancer cell-derived EVs which comprises 1491 interactions between 957 vesicular proteins. We discovered that EVs have well-connected clusters with several hub proteins similar to other subcellular networks. We also experimentally validated that direct protein interactions between cellular proteins may be involved in protein sorting during EV formation. Moreover, physically and functionally interconnected protein complexes form functional modules involved in EV biogenesis and functions. Specifically, we discovered that SRC signaling plays a major role in EV biogenesis, and confirmed that inhibition of SRC kinase decreased the intracellular biogenesis and cell surface release of EVs. Our study provides global insights into the cargo-sorting, biogenesis, and pathophysiological roles of these complex extracellular organelles.  相似文献   

15.
Extracellular vesicles (EVs) including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker) antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG) isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker) antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.  相似文献   

16.
Exosomes are cell-secreted vesicles less than ≈150 nm in size that contain gene-encoding and gene-silencing RNA and cytosolic proteins with roles in intercellular communication. Interest in the use of exosomes as targeted drug delivery vehicles has grown since it was shown that they can bind specific cells and deliver intact genetic material to the cytosol of target cells. We isolated extracellular vesicles (EVs), consisting of a mixture of exosomes and microvesicles, from prostate (PC3) and melanoma (M21) cancer cell lines using serial ultracentrifugation. Interrogation via western blot analysis confirmed enrichment of CD63, a widely recognized EV surface protein, in the EV pellet from both cell lines. Nanoparticle tracking analysis (NTA) of EV pellets revealed that the two cell lines produced distinct vesicle size profiles in the ≈30 nm to ≈400 nm range. NTA further showed that the fraction of exosomes to all EVs was constant, suggesting cellular mechanisms that control the fraction of secreted vesicles that are exosomes. Transmission electron microscopy (TEM) images of the unmodified PC3 EVs showed vesicles with cup-like (i.e., nanocapsule) and previously unreported prolate morphologies. The observed non-spherical morphologies for dehydrated exosomal vesicles (size ≈30–100 nm) are most likely related to the dense packing of proteins in exosome membranes. Solubility phase diagram data showed that EVs enhanced the solubility of paclitaxel (PTX) in aqueous solution compared to a water-only control. Combined with their inherent targeting and cytosol delivery properties, these findings highlight the potential advantages of using exosomes as chemotherapeutic drug carriers in vivo.  相似文献   

17.
Autocrine, paracrine, and juxtacrine are recognized modes of action for mammalian EGFR ligands including EGF, TGF-α (TGFα), amphiregulin (AREG), heparin-binding EGF-like growth factor (HB-EGF), betacellulin, epiregulin, and epigen. We identify a new mode of EGFR ligand signaling via exosomes. Human breast and colorectal cancer cells release exosomes containing full-length, signaling-competent EGFR ligands. Exosomes isolated from MDCK cells expressing individual full-length EGFR ligands displayed differential activities; AREG exosomes increased invasiveness of recipient breast cancer cells 4-fold over TGFα or HB-EGF exosomes and 5-fold over equivalent amounts of recombinant AREG. Exosomal AREG displayed significantly greater membrane stability than TGFα or HB-EGF. An average of 24?AREG molecules are packaged within an individual exosome, and AREG exosomes are rapidly internalized by recipient cells. Whether the composition and behavior of exosomes differ between nontransformed and transformed cells is unknown. Exosomes from DLD-1?colon cancer cells with a mutant KRAS allele exhibited both higher AREG levels and greater invasive potential than exosomes from isogenically matched, nontransformed cells in which mutant KRAS was eliminated by homologous recombination. We speculate that EGFR ligand signaling via exosomes might contribute to diverse cancer phenomena such as field effect and priming of the metastatic niche.  相似文献   

18.
Salmonella Typhimurium is a causative agent of nontyphoidal salmonellosis, for which there is a lack of a clinically approved vaccine in humans. As an intracellular pathogen, Salmonella impacts many cellular pathways. However, the intercellular communication mechanism facilitated by host-derived small extracellular vesicles (EVs), such as exosomes, is an overlooked aspect of the host responses to this infection. We used a comprehensive proteome-based network analysis of exosomes derived from Salmonella-infected macrophages to identify host molecules that are trafficked via these EVs. This analysis predicted that the host-derived small EVs generated during macrophage infection stimulate macrophages and promote activation of T helper 1 (Th1) cells. We identified that exosomes generated during infection contain Salmonella proteins, including unique antigens previously shown to stimulate protective immune responses against Salmonella in murine studies. Furthermore, we showed that host EVs formed upon infection stimulate a mucosal immune response against Salmonella infection when delivered intranasally to BALB/c mice, a route of antigen administration known to initiate mucosal immunity. Specifically, the administration of these vesicles to animals stimulated the production of anti-Salmonella IgG antibodies, such as anti-OmpA antibodies. Exosomes also stimulated antigen-specific cell-mediated immunity. In particular, splenic mononuclear cells isolated from mice administered with exosomes derived from Salmonella-infected antigen-presenting cells increased CD4+ T cells secreting Th1-type cytokines in response to Salmonella antigens. These results demonstrate that small EVs, formed during infection, contribute to Th1 cell bias in the anti-Salmonella responses. Collectively, this study helps to unravel the role of host-derived small EVs as vehicles transmitting antigens to induce Th1-type immunity against Gram-negative bacteria. Understanding the EV-mediated defense mechanisms will allow the development of future approaches to combat bacterial infections.  相似文献   

19.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

20.
Increasing evidence indicates that extracellular vesicles (EVs) secreted from tumor cells play a key role in the overall progression of the disease state. EVs such as exosomes are secreted by a wide variety of cells and transport a varied population of proteins, lipids, DNA, and RNA species within the body. Gliomas constitute a significant proportion of all primary brain tumors and majority of brain malignancies. Glioblastoma multiforme (GBM) represents grade IV glioma and is associated with very poor prognosis despite the cumulative advances in diagnostic procedures and treatment strategies. Here, the authors describe the progress in understanding the role of EVs, especially exosomes, in overall glioma progression, and how new research is unraveling the utilities of exosomes in glioma diagnostics and development of next‐generation therapeutic systems. Finally, based on an understanding of the latest scientific literature, a model for the possible working of therapeutic exosomes in glioma treatment is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号