首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophage-derived foam cells were one of the hallmarks of atherosclerosis, and microRNAs played an important role in the formation of foam cells. In order to explore the roles of miRNA in the formation of foam cells, we investigated miRNA expression profiles in foam cells through high-throughput sequencing technology. A total of 84 miRNAs were differentially expressed between RAW 264.7 macrophages and foam cells induced by ox-LDL. Thirty miRNAs were upregulated and 54 miRNAs were downregulated. GO terms and KEGG pathways analysis revealed that the target genes of most of DE miRNAs were mainly enriched in “cell differentiation,” “endocytosis,” “MAPK signaling pathway,” and “FoxO signaling pathway.” The target genes of some DE miRNAs were enriched in “Insulin signaling pathway,” “Hippo signaling pathway,” “TNF signaling pathway,” “NF-kappa B signaling pathway,” and “cell death.” Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-28a-5p and miR-30c-1-3p directly inhibited LRAD3 and LOX-1 mRNA expression through targeting the 3’UTR of LRAD3 and LOX-1 mRNA, respectively. Our study indicates that miRNAs are extensively involved in the formation of foam cells, and provides a valuable resource for further study the role of miRNAs in atherosclerosis.  相似文献   

2.
Cui K  Hou G  Feng Y  Liang T  Kong F  Sun L  Wang S 《Cellular immunology》2012,272(2):290-292
Induction of immune tolerance to ox-LDL could reduce atherosclerosis by modulation immune response. We suppose that very low density lipoprotein (VLDL) may have a similar role to ox-LDL in autoimmune response of atherosclerosis. In this study, neonatal rats were injected with ox-LDL, VLDL, or equal-volume saline, respectively. Vaccination with ox-LDL reduced the level of specific antibody, T cells proliferation response, and the level of endothelins. The method also had a tendency of reducing blood lipids. Vaccination with VLDL obviously reduced the level of specific antibody and T cells proliferation. Though there was also a tendency of reducing blood lipids and endothelins, the effect was less prominent than that with ox-LDL. We conclude that, although the effect was less obvious, vaccination with VLDL to induce neonatal tolerance had an effect on modulating immune response, protecting endothelial cells, and reducing blood lipids.  相似文献   

3.
The role of antioxidant supplementation with vitamin E in the prevention of atherosclerosis has been a topic of considerable recent interest. The relevance of vitamin E for macrophage-derived foam cell formation, a hallmark of atherosclerosis, however, has not been unequivocally resolved. Here, we investigated the effect of oxidized LDL (ox-LDL) and vitamin E on lipid accumulation and total cholesterol content in U937 macrophages, reactive oxygen species generation and expression of nuclear factor-κB (NF-κB) signaling pathway. The results showed that the mRNA expression and protein levels of P-selectin were evident in U937 macrophages treated with ox-LDL and vitamin E, which indicating that expression of P-selectin is important in macrophage-derived foam cell formation. Moreover, P-selectin changes in ox-LDL-induced foam cell formation can be mediated by vitamin E through activities of nuclear NF-κB activated by serine phosphorylation of NF-κB inhibitor α, suggesting that activation of NF-κB pathway by macrophages may occur. Taken together, these data suggested that vitamin E can prevent ox-LDL-induced foam cell macrophages formation through modulating the activities of oxidative stress-induced NF-κB pathway.  相似文献   

4.
5.
Atherosclerosis is a kind of chronic cardiovascular disease, characterized by oxidized low-density lipoprotein (ox-LDL) accumulation in macrophage. Tanshinone IIA (Tan), a lipophilic pharmacologically activate compound from Salvia miltiorrhiza Bunge, has been indicated to exert cardioprotective roles. Nevertheless, the biological role of Tan and regulatory mechanism in atherosclerosis are not fully established. In present study, atherosclerosis model was established in THP-1-derived macrophages by treatment of ox-LDL. The adipogenesis was measured by Nile red staining. The expressions of inflammatory factors, microRNA-130b (miR-130b) and WNT5A were measured by quantitative real-time polymerase chain reaction or Western blot. The target association between miR-130b and WNT5A was explored via luciferase activity and RNA immunoprecipitation assay. The results showed that exposure of Tan inhibited ox-LDL-induced adipogenesis and expressions of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-alpha in THP-1-derived macrophages. miR-130b expression was decreased in THP-1-derived macrophages treated by ox-LDL and its overexpression attenuated adipogenesis as well as inflammatory response. miR-130b knockdown reversed the regulatory effect of Tan on adipogenesis and inflammatory response in THP-1-derived macrophages stimulated by ox-LDL. In addition, WNT5A acted as a functional target of miR-130b and inhibited by Tan and miR-130b. As a conclusion, Tan decreased the adipogenesis and inflammatory response by mediating miR-130b and WNT5A, providing a novel theoretical foundation for treatment of atherosclerosis.  相似文献   

6.
Atherosclerosis has been recognized as a chronic inflammation process induced by lipid of the vessel wall. Oxidized low-density lipoprotein (ox-LDL) can drive atherosclerosis progression involving macrophages. Recently, long noncoding RNAs (lncRNAs) have been reported to play critical roles in atherosclerosis development. In our current study, we focused on the biological roles of lncRNA NEAT1 in atherosclerosis progress. Here, we found that ox-LDL was able to trigger human macrophages THP-1 cells, a human monocytic cell line, apoptosis in a dose-dependent and time-dependent course. In addition, we observed that NEAT1 was significantly increased in THP-1 cells incubated with ox-LDL and meanwhile miR-342-3p was greatly decreased. Then, NEAT1 was silenced by transfection of small interfering RNA (siRNA) of NEAT1 into THP-1 cells. As exhibited, CD36, oil-red staining levels, total cholesterol (TC), total cholesterol (TG) levels and THP-1 cell apoptosis were obviously repressed by knockdown of NEAT1. Furthermore, inhibition of NEAT1 contributed to the repression of inflammation in vitro. Interleukin 6 (IL-6), IL-1β, cyclooxygenase-2 (COX-2) and tumour necrosis factor-alpha (TNF-α) protein levels were remarkably depressed by NEAT1 siRNA in THP-1 cells. By using bioinformatics analysis, miR-342-3p was predicted as a downstream target of NEAT1 and the correlation between them was confirmed in our study. Moreover, overexpression of miR-342-3p could also greatly suppress inflammation response and lipid uptake in THP-1 cells. Knockdown of NEAT1 and miR-342-3p mimics inhibited lipid uptake in THP-1 cells. In conclusion, we implied that blockade of NEAT1 repressed inflammation response through modulating miR-342-3p in human macrophages THP-1 cells and NEAT1 may offer a promising strategy to treat atherosclerotic cardiovascular diseases.  相似文献   

7.
Monocytes, macrophages, and foam cells expressing CD147 can stimulate the production of several matrix metalloproteinases (MMPs) associated with the development of atherosclerosis. We defined the CD147 expression profile and examined the correlation between foam cell development and MMP-2, -9 expressions. Foam cells were derived from U937-stimulated macrophages using various concentrations of oxidized low-density lipoprotein (ox-LDL). PMA-stimulated U937 cells had a 4- to 5-fold increase in CD147 mRNA compared to undifferentiated monocytes and membrane-associated (mCD147) on foam cells decreased in response to ox-LDL in a dose-dependent manner compared to untreated macrophages. In contrast, ox-LDL treatment increased the levels of soluble CD147 (sCD147) and MMP-2, -9 in a dose-dependent manner. Our data suggested that monocyte differentiation up-regulated CD147 expression and lipid enrichment of foam cells had no effect on CD147 mRNA expression. Lipid loading in macrophages reduced mCD147 expression while increasing the levels of MMP-2, -9 and sCD147 in supernatants.  相似文献   

8.
Accumulation of low-density lipoprotein (LDL)-derived cholesterol by macrophages in vessel walls is a pathogenomic feature of atherosclerotic lesions. Platelets contribute to lipid uptake by macrophages through mechanisms that are only partially understood. We have previously shown that platelet factor 4 (PF4) inhibits the binding and degradation of LDL through its receptor, a process that could promote the formation of oxidized LDL (ox-LDL). We have now characterized the effect of PF4 on the binding of ox-LDL to vascular cells and macrophages and on the accumulation of cholesterol esters. PF4 bound to ox-LDL directly and also increased ox-LDL binding to vascular cells and macrophages. PF4 did not stimulate ox-LDL binding to cells that do not synthesize glycosaminoglycans or after enzymatic cleavage of cell surface heparan and chondroitin sulfates. The effect of PF4 on binding ox-LDL was dependent on specific lysine residues in its C terminus. Addition of PF4 also caused an approximately 10-fold increase in the amount of ox-LDL esterified by macrophages. Furthermore, PF4 and ox-LDL co-localize in atherosclerotic lesion, especially in macrophage-derived foam cells. These observations offer a potential mechanism by which platelet activation at sites of vascular injury may promote the accumulation of deleterious lipoproteins and offer a new focus for pharmacological intervention in the development of atherosclerosis.  相似文献   

9.
Luo LJ  Liu F  Wang XY  Dai TY  Dai YL  Dong C  Ge BX 《Cellular signalling》2012,24(10):1889-1898
The uptake of oxidized low density lipoprotein (ox-LDL) by macrophages usually leads to the formation of lipid-laden macrophages known as "foam cells," and this process plays an important role in the development of atherosclerosis. Ox-LDL activates mitogen-activated protein kinase (MAP) kinases and nuclear factor (NF)-κB, and activations of p38 and NF-κB are important for the formation of foam cells. MAP kinase phosphatase (MKP) 5 is a member of the dual specificity phosphatases (DUSPs) family that can selectively dephosphorylate activated MAPKs to regulate innate and adaptive immune responses. However, the role of MKP5 in the formation of foam cells remains unknown. Here, we found that stimulation of ox-LDL induces the expression of MKP5 in macrophages. MKP5 deficiency blocked the uptake of ox-LDL and the formation of foam cells. Further analysis revealed that deletion of MKP5 reduced the ox-LDL-induced activation of NF-κB. Also, MKP5 deficiency markedly inhibited the production of TNF-α, but enhanced the levels of TGF-β1 in ox-LDL-stimulated macrophages. Moreover, inhibition of NF-κB by p65 RNAi significantly reduced foam cell formation in macrophages from WT mice relative to MKP5-deficient mice. Thus, MKP5 has an essential role in the formation of foam cells through activation of NF-κB, and MKP5 represents a novel target for the therapeutic intervention of atherosclerosis.  相似文献   

10.
MicroRNAs (miRNAs) regulate target gene expression through translation repression or mRNA degradation. These non-coding RNAs are emerging as important modulators in cellular pathways, and they appear to play a key role in tumorigenesis. With increasing understanding of the miRNA target genes and the cellular behaviors influenced by them, modulating the miRNA activities may provide exciting opportunities for cancer therapy. Here the latest findings of which genes are targeted by each miRNA are reviewed, with particular emphasis on the deciphering of their possible mechanisms and the potential of miRNA-based cancer therapeutics.  相似文献   

11.
Oxidized low-density lipoprotein (ox-LDL) is a critical mediator of atherogenesis. Macrophage uptake of ox-LDL and their subsequent development into foam cells is the principal event in atherosclerosis. Interleukin-1β (IL-1β), a prototypic multifunctional cytokine involved in inflammation, has an important effect on the pathogenesis and progression of atherosclerosis. Here we show that the phagocytosis of ox-LDL can induce human macrophages to secrete IL-1β by activating the NLRP3 inflammasome, and we further show that the activation of the NLRP3 inflammasome is dependent on the generation of reactive oxygen species and is related to the cathepsin B pathway. Furthermore, ox-LDL can upregulate the expression of the pro-IL-1β protein, thus priming IL-1β secretion. Therefore, our results suggest that the role of ox-LDL in atherosclerosis-related inflammation may involve the activation of the NLRP3 inflammasome.  相似文献   

12.
Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam cell formation.  相似文献   

13.
Yang QW  Mou L  Lv FL  Wang JZ  Wang L  Zhou HJ  Gao D 《Biorheology》2005,42(3):225-236
TLR4 plays an important role in atherosclerosis, but little is known about the precise mechanism. Herein, we investigated the role of TLR4/NF-kappaB signaling pathway in monocyte-endothelial adhesion induced by low shear stress and Ox-LDL. We found that low shear stress up-regulated TLR4 expression in endothelial cells, and that ox-LDL exerted an obvious synergistic action as revealed by RT-PCR and Western blotting analysis. Low shear stress also significantly up-regulated IL-8 expression in endothelial cells. Meanwhile, NF-kappaB activity and the adhesion force of monocytes were increased, and there was a synergetic action of ox-LDL. However, following transfection with a functional mutant of TLR4 (C3H/HeJ, TLR4 Dicd) or addition of anti-human TLR4 mAb, IL-8 expression was obviously decreased, NF-kappaB activity in cells remarkably inhibited, and the adhesion force of monocyte significantly reduced. Nevertheless, anti-human TLR2 mAb had no similar effects. These findings suggest that TLR4 may be involved in the early stages of atherosclerosis, associating ox-LDL, inflammation/infection, and low shear stress. Therefore, TLR4 is expected to be a new target for preventing and treating atherosclerosis.  相似文献   

14.
15.
The role of matrix mechanics on cell behavior is under intense investigation. Cells exert contractile forces on their matrix and the matrix elasticity can alter these forces and cell migratory behavior. However, little is known about the contribution of matrix mechanics and cell-generated forces to stable cell-cell contact and tissue formation. Using matrices of varying stiffness and measurements of endothelial cell migration and traction stresses, we find that cells can detect and respond to substrate strains created by the traction stresses of a neighboring cell, and that this response is dependent on matrix stiffness. Specifically, pairs of endothelial cells display hindered migration on gels with elasticity below 5500 Pa in comparison to individual cells, suggesting these cells sense each other through the matrix. We believe that these results show for the first time that matrix mechanics can foster tissue formation by altering the relative motion between cells, promoting the formation of cell-cell contacts. Moreover, our data indicate that cells have the ability to communicate mechanically through their matrix. These findings are critical for the understanding of cell-cell adhesion during tissue formation and disease progression, and for the design of biomaterials intended to support both cell-matrix and cell-cell adhesion.  相似文献   

16.
Accumulation of monocytes and the entrapment of oxidized-low-density lipoprotein (ox-LDL) in monocytes are important in the differentiation into "foam" macrophages and the pathogenesis of atherosclerosis. We investigated the role of monocyte chemoattractant protein-1 (MCP-1) in the expression of scavenger receptor (SCR) by using resting monocytes prepared by counterflow centrifugal elutriation. Our results showed that: (1) MCP-1 increased the expression of CD36 SCR by flow cytometric analysis. (2) MCP-1 increased incorporation of 125I-labeled ox-LDL and oil red O staining. (3) MCP-1 and ox-LDL enhanced in vitro transendothelial monocyte migration. (4) These functions were mediated at least in part via extracellular signal-regulated kinase (ERK) pathway. (5) MCP-1 and ox-LDL did not induce monocyte proliferation. Our results imply that MCP-1 is involved in the inflammatory process of atherosclerosis through the induction of SCR expression via the ERK pathway and differentiation of monocytes into foam macrophages, as well as induction of monocyte migration.  相似文献   

17.
18.
There is increasing evidence suggesting that oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury contributing to the age-related physio-pathological process of atherosclerosis. In this study, the effects of native LDL and ox-LDL on the mechanical properties of living human umbilical vein endothelial cells (HUVEC) were investigated by atomic force microscopy (AFM) force measurements. The contribution of filamentous actin (F-actin) and vimentin on cytoskeletal network organization were also examined by fluorescence microscopy. Our results revealed that ox-LDL had an impact on the HUVEC shape by interfering with F-actin and vimentin while native LDL showed no effect. AFM colloidal force measurements on living individual HUVEC were successfully used to measure stiffness of cells exposed to native and ox-LDL. AFM results demonstrated that the cell body became significantly stiffer when cells were exposed for 24 h to ox-LDL while cells exposed for 24 h to native LDL displayed similar rigidity to that of the control cells. Young's moduli of LDL-exposed HUVEC were calculated using two models. This study thus provides quantitative evidence on biomechanical mechanisms related to endothelial cell dysfunction and may give new insight on strategies aiming to protect endothelial function in atherosclerosis.  相似文献   

19.
Atherosclerosis is a complex inflammatory disease that involves disrupted cellular cholesterol levels and formation of foam cells. Studies about long noncoding RNA (lncRNA) have revealed its function in the development of atherosclerosis, by mediating reverse cholesterol transport and formation of foam cells. In this study, we found that oxidized low-density lipoprotein (ox-LDL) markedly decreased lncRNA AC096664.3 in vascular smooth muscle cells (VSMCs) and THP-1 macrophages. We also found that ox-LDL reduced ATP-binding cassette (ABC) G1 through inhibiting lncRNA AC096664.3 in VSMCs. Further experiments showed that the downregulation of lncRNA AC096664.3 reduced ABCG1 expression through inhibiting the expression of peroxisome proliferator–activated receptor-γ (PPAR-γ) and that ox-LDL reduced ABCG1 expression through inhibiting the expression of PPAR-γ. Furthermore, we discovered that ox-LDL inhibited ABCG1 via the lncRNA AC096664.3/PPAR-γ/ABCG1 pathway, which led to an increase in total and free cholesterol in VMSCs. Thus, we confirmed that ox-LDL induces cholesterol accumulation via the lncRNA AC096664.3/PPAR-γ/ABCG1 pathway in VSMCs, indicating a promising novel therapy in protecting against atherosclerosis.  相似文献   

20.
Major depressive disorders are common and disabling conditions associated with significant psychosocial impairment and suicide risk. At least 3–4 % of all depressive individuals die by suicide. Evidence suggests that small non-coding RNAs, in particular microRNAs (miRNAs), play a critical role in major affective disorders as well as suicide. We performed a detailed review of the current literature on miRNAs and their targets in major depression and related disorders as well as suicidal behavior, with a specific focus on miR-185 and miR-491-3p, which have been suggested to participate in the pathogenesis of major depression and/or suicide. miRNAs play a fundamental role in the development of the brain. Several miRNAs are reported to influence neuronal and circuit formation by negatively regulating gene expression. Global miRNA reduced expression was found in the prefrontal cortex of depressed suicide completers when compared to that of nonpsychiatric controls who died of other causes. One particular miRNA, miR-185, was reported to regulate TrkB-T1, which has been associated with suicidal behavior upon truncation. Furthermore, cAMP response element-binding protein–brain-derived neurotrophic factor pathways may regulate, through miRNAs, the homeostasis of neural and synaptic pathways playing a crucial role in major depression. miRNAs have gained attention as key players involved in nervous system development, physiology, and disease. Further evidence is needed to clarify the exact role that miRNAs play in major depression and related disorders and suicidal behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号