首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During an initial phase of kidney stone formation, the internalization of calcium oxalate (CaOx) crystals by renal tubular cells has been thought to occur via endocytosis. However, the precise mechanism of CaOx crystal endocytosis remained unclear. In the present study, MDCK renal tubular cells were pretreated with inhibitors specific to individual endocytic pathways, including nystatin (lipid raft/caveolae-mediated), cytochalasin D (actin-dependent or macropinocytosis), and chlorpromazine (CPZ; clathrin-mediated) before exposure to plain (non-labeled), or fluorescence-labeled CaOx monohydrate (COM) crystals. Quantitative analysis by flow cytometry revealed that pretreatment with nystatin and CPZ slightly decreased the crystal internalization, whereas the cytochalasin D pretreatment caused a marked decrease in crystal uptake. Immunofluorescence study and laser-scanning confocal microscopic examination confirmed that the cytochalasin D-pretreated cells had dramatic decrease of the internalized crystals, whereas the total number of crystals interacted with the cells was unchanged (crystals could adhere but were not internalized). These data have demonstrated for the first time that renal tubular cells endocytose COM crystals mainly via macropinocytosis. These novel findings will be useful for further tracking the endocytosed crystals inside the cells during the course of kidney stone formation.  相似文献   

2.
Human angiogenin is a 14-kDa plasma protein with angiogenic and ribonucleolytic activities. Angiogenin binds specifically to aortic smooth muscle cells, activates second messenger pathways, and inhibits their proliferation. Human and bovine aortic smooth muscle cells were used to study the internalization and intracellular fate of human angiogenin at 37 degrees C. Using a specific antibody against angiogenin, we found that the internalized native protein was localized in the perinuclear region at 30 min and then dispersed throughout the cytoplasm. In conditions favoring receptor-mediated endocytosis, internalization of iodinated angiogenin showed a first peak at 5 min and then further increased for up to 24 h. The half-life of the molecule, calculated as 12 h in chase experiments, could contribute to its intracellular accumulation. In cell extracts, in addition to the 14-kDa protein, a 8.7-kDa fragment was observed at 24 h, and three fragments with molecular mass of 10.5, 8.7, and 6. 1 kDa were detected at 48 h. Our data point to a specific internalization and processing of human angiogenin by aortic smooth muscle cells.  相似文献   

3.

Background

Cardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques.

Methodology/Principal Findings

In HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE — SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE — SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots.

Conclusions/Significance

For the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role.  相似文献   

4.
A histopathological and electron microscopic study of the aortic wall of rabbits intoxicated with Solanum malacoxylon was performed. Histological examination showed local loss of the normal waviness of the elastic fibers and calcium deposits. Electron microscopic study of the corresponding areas showed a modified aspect of the smooth muscle cells with loss of some of their differential characteristics, especially their intracytoplasmic fibrils and densifications. The neighbouring elastic fibers showed an electron-dense peripheral band and sometimes a crystal deposit. X-ray microanalysis revealed the presence of a large amount of calcium in these crystals. Collagen fibers played no apparent role in this calcification. These findings support the idea that a local cellular alteration is necessary prior to elastic calcification. Two hypothetical mechanisms are proposed.  相似文献   

5.
Polyelectrolyte multilayer films were employed to support attachment of cultured rat aortic smooth muscle A7r5 cells. Like smooth muscle cells in vivo, cultured A7r5 cells are capable of converting between a nonmotile "contractile" phenotype and a motile "synthetic" phenotype. Polyelectrolyte films were designed to examine the effect of surface charge and hydrophobicity on cell adhesion, morphology, and motility. The hydrophobic nature and surface charge of different polyelectrolyte films significantly affected A7r5 cell attachment and spreading. In general, hydrophobic polyelectrolyte film surfaces, regardless of formal charge, were found to be more cytophilic than hydrophilic surfaces. On the most hydrophobic surfaces, the A7r5 cells adhered, spread, and exhibited little indication of motility, whereas on the most hydrophilic surfaces, the cells adhered poorly if at all and when present on the surface displayed characteristics of being highly motile. The two surfaces that minimized cell adhesion consisted of two varieties of a diblock copolymer containing hydrophilic poly(ethylene oxide) and a copolymer bearing a zwitterionic group AEDAPS, (3-[2-(acrylamido)-ethyldimethyl ammonio] propane sulfonate). Increasing the proportion of AEDAPS in the copolymer decreased the adhesion of cells to the surface. Cells presented with micropatterns of cytophilic and cytophobic surfaces generated by polymer-on-polymer stamping displayed a surface-dependent cytoskeletal organization and a dramatic preference for adhesion to, and spreading on, the cytophilic surface, demonstrating the utility of polyelectrolyte films in manipulating smooth muscle cell adhesion and behavior.  相似文献   

6.
The expression and distribution of types 1, 2, and 3 inositol 1,4, 5-trisphosphate receptor (InsP(3)R) in proliferating, primary cultures of rat aortic smooth muscle were compared to fully developed and differentiated rat aortic smooth muscle. Subtype-specific InsP(3)R antibodies revealed that the expression of type 1 InsP(3)R was similar in cultured aortic cells and aorta homogenate but expression of type 2 and 3 InsP(3)R subtypes was increased 3-fold in cultured aortic cells. The distribution of the type 1 InsP(3)R was located throughout the cytoplasm; type 2 InsP(3)R was found closely associated with the nucleus and at the plasma membrane; type 3 InsP(3)R was distributed predominantly around the nucleus. Alterations in InsP(3)R subtype expression and localization may have important functions in regulating intracellular calcium release around the nucleus when vascular smooth muscle cells switch to a more proliferating phenotype.  相似文献   

7.
The development of heart and aortic lesions was investigated in 3- to 8-week-old DBA/2NCrj mice. In the heart, small foci of myocardial calcification and severe calcification with subsequent inflammation were observed. Severe lesions were restricted to the myocardium below the right ventricular epicardium. Small foci of myocardial calcification were found from 4 to 8 weeks of age with almost the same frequency. The incidence of severe calcification showed a drastic increase between 6 and 7 weeks of age. Aortic lesions were observed from 3 weeks of age and characterized by focal calcification of the smooth muscle cells and elastic laminae. The frequency of aortic calcification was about 50% and not age-related.  相似文献   

8.
Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical membrane of MDCK cells. However, their functional role as potential crystal receptors had not been validated. The present study aimed to address the potential role of heat shock protein 90 (HSP90) as a COM crystal receptor. The apical membrane was isolated from polarized MDCK cells by the peeling method and recovered proteins were incubated with COM crystals. Western blot analysis confirmed the presence of HSP90 in the apical membrane and the crystal-bound fraction. Immunofluorescence staining without permeabilization and laser-scanning confocal microscopy confirmed the surface HSP90 expression on the apical membrane of the intact cells. Crystal adhesion assay showed that blocking surface HSP90 by specific anti-HSP90 antibody and knockdown of HSP90 by small interfering RNA (siRNA) dramatically reduced crystal binding on the apical surface of MDCK cells (by approximately 1/2 and 2/3, respectively). Additionally, crystal internalization assay revealed the presence of HSP90 on the membrane of endocytic vesicle containing the internalized COM crystal. Moreover, pretreatment of MDCK cells with anti-HSP90 antibody significantly reduced crystal internalization (by approximately 1/3). Taken together, our data indicate that HSP90 serves as a potential receptor for COM crystals on the apical membrane of renal tubular epithelial cells and is involved in endocytosis/internalization of the crystals into the cells.  相似文献   

9.
The neuropeptide substance P, a known mitogen for human blood T-lymphocytes, now is shown to stimulate proliferation of embryonic rat aortic smooth muscle cells of the A7r5 line, at concentrations of 10(-9) M to 10(-6) M. Neurotensin (NT), that has vascular and smooth muscle activity similar to SP, failed to induce proliferation of A7r5 cells. At proliferation-enhancing concentrations, SP increased the concentration of cytosolic Ca2+ in A7r5 cells, suggesting activation of the phosphatidylinositol pathway. Binding of [125I]-substance P to A7r5 cells reached equilibrium rapidly at 4 degrees C, and was saturable, implying that the activation of smooth muscle cells by SP is a receptor-mediated process.  相似文献   

10.
Non-muscle myosin II (NMII) plays a role in many fundamental cellular processes including cell adhesion, migration, and cytokinesis. However, its role in mammalian vascular function is not well understood. Here, we investigated the function of NMII in the biomechanical and signalling properties of mouse aorta. We found that blebbistatin, an inhibitor of NMII, decreases agonist-induced aortic stress and stiffness in a dose-dependent manner. We also specifically demonstrate that in freshly isolated, contractile, aortic smooth muscle cells, the non-muscle myosin IIA (NMIIA) isoform is associated with contractile filaments in the core of the cell as well as those in the non-muscle cell cortex. However, the non-muscle myosin IIB (NMIIB) isoform is excluded from the cell cortex and colocalizes only with contractile filaments. Furthermore, both siRNA knockdown of NMIIA and NMIIB isoforms in the differentiated A7r5 smooth muscle cell line and blebbistatin-mediated inhibition of NM myosin II suppress agonist-activated increases in phosphorylation of the focal adhesion proteins FAK Y925 and paxillin Y118. Thus, we show in the present study, for the first time that NMII regulates aortic stiffness and stress and that this regulation is mediated through the tension-dependent phosphorylation of the focal adhesion proteins FAK and paxillin.  相似文献   

11.
Prolonged exposure to oxidized low density lipoprotein (oxLDL) can alter various aspects of cell biology, including modification of vasomotor responses and downregulation of calcium channel proteins in aortic smooth muscle cells. However, the components of oxLDL responsible for these effects have not been fully elucidated. The study reported here aimed at examining the consequences of extended exposure to oxysterols, cholesterol oxidation products whose levels are elevated in oxLDL as compared to unmodified LDL, on calcium signalling mechanisms in A7r5 cells, a model aortic smooth muscle cell-line. Within 24 h of exposure, all three oxysterol congeners tested caused an elevation in the resting cytoplasmic Ca2+ concentration. These oxysterols also inhibited Ca2+ transients in response to arginine vasopressin and bradykinin, and some but not all congeners ablated Ca2+ signals triggered by platelet activating factor, the ryanodine receptor calcium channel agonist 4-choloro-meta-cresol, or thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ uptake. The effects of long-term exposure to the oxysterol congener 7β-hydroxycholesterol on arginine vasopressin stimulated Ca2+ signals were mainly at the level of Ca2+ release from intracellular stores rather than on Ca2+ influx mechanisms. Of the calcium signalling proteins tested, only the type 1 ryanodine receptor and the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) were significantly downregulated by 24 h exposure to oxysterols. Decreases in IP3R1 protein triggered by 7β-hydroxycholesterol were both time and concentration dependent, occurring over a concentration range encountered within atherosclerotic lesions. IP3R1 downregulation by certain oxysterols is mediated by proteasomal proteolysis, since it can be abolished by co-incubation with epoxomicin. Overall, these data demonstrate that major oxysterol components of oxLDL cause long-term alterations in Ca2+ signalling in a model aortic smooth muscle cell. Such effects could contribute to the pathology of atherosclerotic disease.  相似文献   

12.
Nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of the follicle. Previous studies have shown that HAP stem cells can differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. HAP stem cells effected nerve and spinal cord regeneration in mouse models. Recently, we demonstrated that HAP stem cells differentiated to beating cardiac muscle cells. The differentiation potential to cardiac muscle cells was greatest in the upper part of the follicle. The beat rate of the cardiac muscle cells was stimulated by isoproterenol. In the present study, we observed that isoproterenol directs HAP stem cells to differentiate to cardiac muscle cells in large numbers in culture compared to HAP stem cells not supplemented with isoproterenol. The addition of activin A, bone morphogenetic protein 4, and basic fibroblast growth factor, along with isoproternal, induced the cardiac muscle cells to form tissue sheets of beating heart muscle cells. These results demonstrate that HAP stem cells have great potential to form beating cardiac muscle cells in tissue sheets.  相似文献   

13.
Cultured arterial smooth muscle cells synthesize and secrete two types of sulfated proteoglycans, designated as proteoglycan A and B, into the culture medium. They are isolated as immunologically distinct monomers with relative molecular masses of 280 X 10(3) and 180 X 10(3) and are characterized as chondroitin-sulfate-rich (A) and dermatan-sulfate-rich (B) proteoglycans. Both proteoglycan A and B were labelled with [35S]sulfate and used for studies of endocytosis. Uptake of proteoglycan B by arterial smooth muscle cells shows saturable kinetics. At saturation (500 microM) one cell may endocytose up to 1.5 X 10(6) proteoglycan B molecules/h. Proteoglycan A is internalized at a 10-fold lower rate. No saturation kinetics were observed at high proteoglycan A concentrations (500 microM). Endocytosis of proteoglycan B in the presence of an excess of proteoglycan A and vice versa suggest that proteoglycan A and B do not compete for the same receptor site. Free hyaluronate or chondroitin sulfate do not inhibit the uptake of proteoglycan B or A. The results suggest that proteoglycan B is internalized by arterial smooth muscle cells via a high-affinity receptor-mediated process, whereas proteoglycan A is taken up by fluid endocytosis and/or by low-affinity endocytotic processes.  相似文献   

14.
Simvastatin (SIM) is anti-inflammatory. We used low density lipoprotein receptor knockout (LDLR-/-) mice and human aortic smooth muscle cells (HASMCs) as model systems to study the effect of SIM on arterial calcification and to explore the potential mechanisms contributing to this protective effect. High-fat diet (HFD) caused the LRLR -/- to develop dyslipidemia, diabetics, atherosclerosis and aortic smooth muscle calcification. SIM, N-acetyl cysteine (NAC, a ROS scavenger) and apocynin (APO, a NADPH oxidase inhibitor) did not significantly retard the development of dyslipidemia or diabetic. However, those treatments were still effective in attenuating the HFD-induced atherosclerosis and aortic smooth muscle calcification. These findings suggest that the protective effect of SIM against aortic calcification is not contributed by the cholesterol lowering effect. SIM, NAC and APO were found to attenuate the HFD induced elevation of serum TNF-α, soluble TNFR1 (sTNFR1), 3-nitro-tyrosine. We hypothesized that the pro-inflammatory cytokine, oxidative stress and TNFR1 played a role in inducing aortic calcification. We used HASMC to investigate the role of TNF-α, oxidative stress and TNFR1 in inducing aortic calcification and to elucidate the mechanism contributes the protective effect of SIM against aortic calcification. We demonstrated that treating HASMC with TNF-α induced cell Ca deposit and result in an increase in ALP, NADPH oxidase activity, NF-kB subunit p65, BMP2, MSX2, and RUNX2 expression. SIM suppressed the TNF-α induced activation of NADPH oxidase subunit p47, the above-mentioned bone markers and TNFR1 expression. Furthermore, p65, p47 and TNFR1 siRNAs inhibited the TNF-α-mediated stimulation of BMP-2, MSX2, RUNX2 expression. SIM, APO, and NAC either partially inhibit or completely block the TNF-α induced H2O2 or superoxide production. These results suggest that SIM may, independent of its cholesterol-lowering effect, suppresses the progression of vascular diseases through the inhibition of the inflammation mediators TNF-α and TNFR1.  相似文献   

15.
Increased aortic pulse-wave velocity (PWV) reflects increased arterial stiffness and is a strong predictor of cardiovascular risk in chronic kidney disease (CKD). We examined functional and structural correlations among PWV, aortic calcification, and vascular remodeling in a rodent model of CKD, the Lewis polycystic kidney (LPK) rat. Hemodynamic parameters and beat-to-beat aortic PWV were recorded in urethane-anesthetized animals [12-wk-old hypertensive female LPK rats (n = 5)] before the onset of end-stage renal disease and their age- and sex-matched normotensive controls (Lewis, n = 6). Animals were euthanized, and the aorta was collected to measure calcium content by atomic absorption spectrophotometry. A separate cohort of animals (n = 5/group) were anesthetized with pentobarbitone sodium and pressure perfused with formalin, and the aorta was collected for histomorphometry, which allowed calculation of aortic wall thickness, medial cross-sectional area (MCSA), elastic modulus (EM), and wall stress (WS), size and density of smooth muscle nuclei, and relative content of lamellae, interlamellae elastin, and collagen. Mean arterial pressure (MAP) and PWV were significantly greater in the LPK compared with Lewis (72 and 33%, respectively) animals. The LPK group had 6.8-fold greater aortic calcification, 38% greater aortic MCSA, 56% greater EM/WS, 13% greater aortic wall thickness, 21% smaller smooth muscle cell area, and 20% less elastin density with no difference in collagen fiber density. These findings demonstrate vascular remodeling and increased calcification with a functional increase in PWV and therefore aortic stiffness in hypertensive LPK rats.  相似文献   

16.
A comparative biochemical and morphological study was made of calf aortic smooth muscle cells found in situ and grown in vitro under various conditions. Striking alterations in enzyme contents, physical properties, and morphological appearances of lysosomes, endoplasmic reticulum, plasma membranes and, to a lesser extent, mitochondria were observed upon culturing of calf aortic smooth muscle cells. These changes first appeared in cells growing out of tissue explants. They developed further upon subculturing of the cells and depended greatly on the culture conditions used. The alterations included increases in specific activities of some 5- to 25-fold of four acid hydrolases, an average ninefold increase in 5' -nucleotidase, sevenfold increase in cytochrome oxidase, and fourfold increase in neutral α-glucosidase in subcultured smooth muscle cells compared to aortic cells in situ. Cell fractionation studies showed significant shifts in the equilibrium densities of plasma membranes, microsomes, and lysosomes, but not of mitochondria, in smooth muscle cells growing out from explants and in subcultured cells, compared to cells isolated from intact aortas. Although the cells grown in vitro exhibited typical phenotypic features of smooth muscle cells such as abundant myofilaments and surface vesicles, alterations in the morphological appearance of the endoplasmic reticulum, Golgi apparatus, and, especially, lysosomes were observed. These results demonstrate significant differences in specific cellular characteristics and functions of aortic smooth muscle cells grown in vitro compared to aortic cells in situ.  相似文献   

17.
Summary Peptides labelled with the fluorophore cyanine 3 were used to study naturally expressed neuropeptide receptors by confocal microscopy in continuous cell lines, primary cultures, and unfixed tissue. Swiss 3T3 fibroblasts bound cyanine 3-gastrin-releasing peptide at 4°C, and internalized the peptide after 10 min at 37°C. Internalization was specific, since it was blocked by incubation with unlabelled peptide. Primary cultures of myenteric neurons of the guinea pig incubated with cyanine 3-substance P at 4°C had specific surface labelling. After 30 s at 37°C, the peptide was internalized into vesicles in both the soma and neurites. Direct observation of live neurons showed movement of fluorescent vesicles to a perinuclear region after 30 min. Endocytosis was associated with a loss of surface binding sites. Unfixed whole mounts of guinea pig and rat ileum were incubated with cyanine 3-neurokinin A at 4°C. After 5 min at 37°C, Cy3-neurokinin A was specifically internalized in neurons and smooth muscle cells. After 30 min, a perinuclear labelling occurred in some cells. Labelling in rat neurons was diminished by the NK3-R antagonist SR142801. Thus, cyanine 3-neuropeptides are valuable tools to study expression and endocytosis of naturally expressed receptors.  相似文献   

18.
Summary Polyclonal antibodies to chicken gizzard calponin were used to localize calponin and determine calponin expression in rabbit and human aortic smooth muscle cells in culture. Calponin was localized on the microfilament bundles of cultured smooth muscle cells. Early in primary culture,ccalponin staining was accumulated preferentially in the central part of the cell body. With time in culture, the number of calponin-negative smooth muscle cells increased while the distribution of calponin in calponin-positive cells became more even along the stress fibers. Calponin content and the calponin/actin ratio decreased about 5-fold in rabbit aortic smooth muscle cells during the first week in primary culture and remained low in proliferating cells. The same tendency in calponin expression was observed when human vascular smooth muscle was studied. On cryostat sections of human umbilical cord, calponin antibodies mainly stained vessel walls of both the arteries and veins, although less intensive labelling was also observed in non-vascular tissue. When primary isolates of human aortic intimal and medial smooth muscle cells were compared with corresponding passaged cultures, it was found that calponin content was reduced about 9-fold in these cells in culture and was similar to the amount of calponin in endothelial cells and fibroblasts. Thus, high calponin expression may be used as an additional marker of vascular smooth muscle cell contractile phenotype.  相似文献   

19.
摘要 目的:观察时钟基因Bmal1的过表达对血管平滑肌细胞增殖的影响,进一步探讨生物节律对于血管发育的具体影响。方法:采用包装GV341-Bmal1载体的慢病毒转染的方法构建大鼠胸主动脉平滑肌细胞(A7R5)稳定转染Bmal1的细胞系,实时定量PCR和细胞爬片Bmal1的免疫荧光染色的方法判断所构建细胞系是否稳定过表达Bmal1,细胞爬片Ki67的免疫荧光染色的方法观察时钟基因Bmal1的过表达对血管平滑肌细胞增殖的影响。结果:实时定量PCR结果显示稳定转染Bmal1组细胞Bmal1的表达是对照组的11.2倍(P<0.01);细胞爬片的免疫荧光染色结果显示稳定转染Bmal1组细胞BMAL1的表达明显升高(P<0.05),且稳定转染Bmal1组Ki67阳性细胞比例明显升高(P<0.05)。结论:通过慢病毒转染的方法成功构建了血管平滑肌细胞稳定转染Bmal1的细胞系,细胞片Ki67的免疫荧光染色结果显示Bmal1的过表达促进了血管平滑肌细胞的增殖。  相似文献   

20.
Smooth muscle cell migration, proliferation, and deposition of extracellular matrix are key events in atherogenesis and restenosis development. To explore the mechanisms that regulate smooth muscle cell function, we have investigated whether perlecan, a basement membrane heparan sulfate proteoglycan, modulates interaction between smooth muscle cells and other matrix components. A combined substrate of fibronectin and perlecan showed a reduced adhesion of rat aortic smooth muscle cells by 70-90% in comparison to fibronectin alone. In contrast, perlecan did not interfere with cell adhesion to laminin. Heparinase treated perlecan lost 60% of its anti-adhesive effect. Furthermore, heparan sulfate as well as heparin reduced smooth muscle cell adhesion when combined with fibronectin whereas neither hyaluronan nor chondroitin sulfate had any anti-adhesive effects. Addition of heparin as a second coating to a preformed fibronectin matrix did not affect cell adhesion. Cell adhesion to the 105- and 120 kDa cell-binding fragments of fibronectin, lacking the main heparin-binding domains, was also inhibited by heparin. In addition, co-coating of fibronectin and (3)H-heparin showed that heparin was not even incorporated in the substrate. Morphologically, smooth muscle cells adhering to a substrate prepared by co-coating of fibronectin and perlecan or heparin were small, rounded, lacked focal contacts, and showed poorly developed stress fibers of actin. The results show that the heparan sulfate chains of perlecan lead to altered interactions between smooth muscle cells and fibronectin, possibly due to conformational changes in the fibronectin molecule. Such interactions may influence smooth muscle cell function in atherogenesis and vascular repair processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号