首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs), a pathological hallmark of rheumatoid arthritis (RA), exhibit the characteristics of tumor cells. The extracts of Cirsium japonicum var. ussuriense have been shown to possess antitumor and anti-inflammatory activities. Our study aimed to investigate the effects of pectolinarin, a flavonoid compound isolated from C. japonicum var. ussuriense, on RA. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Apoptosis was determined by flow cytometry analysis and Western blot analysis of Bax and Bcl-2 levels. Inflammation was assessed by detecting the expressions and secretion of interleukin (IL)-6 and IL-8 using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) was also measured. The effects of pectolinarin on the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway were examined by Western blot. We found that pectolinarin significantly inhibited cell viability at 24 and 48 hours in a dose-dependently manner in RA-FLSs. Pectolinarin reduced the apoptotic rate, increased Bax level, and decreased Bcl-2 level in RA-FLSs. Pectolinarin inhibited the messenger RNA expression and secretion of IL-6 and IL-8, as well as the production of PGE2 and NO in RA-FLSs. Furthermore, pectolinarin inactivated the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway in RA-FLSs. Activation of the PI3K/Akt pathway by 740Y-P impaired the effects of pectolinarin on cell viability, apoptosis, and inflammation in RA-FLSs. In conclusion, pectolinarin suppressed cell proliferation and inflammatory response and induced apoptosis in RA-FLSs via inactivation of the PI3K/Akt pathway.  相似文献   

2.
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease of unclear etiology. This study was conducted to identify critical factors involved in the synovial hyperplasia in RA pathology. We applied cDNA microarray analysis to profile the gene expressions of RA fibroblast-like synoviocytes (FLSs) from patients with RA. We found that the MLN51 (metastatic lymph node 51) gene, identified in breast cancer, is remarkably upregulated in the hyperactive RA FLSs. However, growth-retarded RA FLSs passaged in vitro expressed small quantities of MLN51. MLN51 expression was significantly enhanced in the FLSs when the growth-retarded FLSs were treated with granulocyte-macrophage colony-stimulating factor (GM-CSF) or synovial fluid (SF). Anti-GM-CSF neutralizing antibody blocked the MLN51 expression even though the FLSs were cultured in the presence of SF. In contrast, GM-CSF in SFs existed at a significant level in the patients with RA (n = 6), in comparison with the other inflammatory cytokines, IL-1beta and TNF-alpha. Most RA FLSs at passage 10 or more recovered from their growth retardation when cultured in the presence of SF. The SF-mediated growth recovery was markedly impaired by anti-GM-CSF antibody. Growth-retarded RA FLSs recovered their proliferative capacity after treatment with GM-CSF in a dose-dependent manner. However, MLN51 knock-down by siRNA completely blocked the GM-CSF/SF-mediated proliferation of RA FLSs. Taken together, our results imply that MLN51, induced by GM-CSF, is important in the proliferation of RA FLSs in the pathogenesis of RA.  相似文献   

3.
Rheumatoid arthritis (RA) is an autoimmune disease, which can lead to joint inflammation and progressive joint destruction. Kruppel-like factor 7 (KLF7) is the member of KLF family and plays an important role in multiple biological progresses. However, its precise roles in RA have not been described. Present study aimed to investigate the role of KLF7 in RA-fibroblast-like synoviocytes (FLSs). Data showed that KLF7 expression was obviously upregulated in synovial tissues of rats with adjuvant-induced arthritis. Functional studies demonstrated that the loss of KLF7 may suppress cell proliferation and the expression of pro-inflammatory factors (IL-6, IL-1β, IL-17A) and matrix metalloproteinase (MMP-1, MMP-3, MMP-13) in FLSs through the inhibition of phosphorylation of nuclear factor κB (NF-κB) p65 and JNK. We further showed that miR-9a-5p specifically interacts with KLF7 to negatively regulate the expression of KLF7 in RA-FLSs. Taken together, our results demonstrated that KLF7 which targeted by miR-9a-5p might participate in the pathogenesis of RA by promoting cell proliferation, pro-inflammatory cytokine release and MMP expression through the activation of NF-κB and JNK pathways in RA-FLSs. Hence, KLF7 could be a novel target for RA therapy.  相似文献   

4.
Migration and invasion of fibroblast-like synoviocytes (FLSs) are critical in the pathogenesis of rheumatoid arthritis (RA). Hypoxic conditions are present in RA joints, and hypoxia has been extensively studied in angiogenesis and inflammation. However, its effect on the migration and invasion of RA-FLSs remains unknown. In this study, we observed that RA-FLSs exposed to hypoxic conditions experienced epithelial–mesenchymal transition (EMT), with increased cell migration and invasion. We demonstrated that hypoxia-induced EMT was accompanied by increased hypoxia-inducible factor (HIF)-1α expression and activation of Akt. After knockdown or inhibition of HIF-1α in hypoxia by small interfering RNA or genistein (Gen) treatment, the EMT transformation and invasion ability of FLSs were regained. HIF-1α could be blocked by phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, indicating that HIF-1α activation was regulated by the PI3K/Akt pathway. Administration of LY294002 (20 mg/kg, intra-peritoneally) twice weekly and Gen (25 mg/kg, by gavage) daily for 3 weeks from day 20 after primary immunization in a collagen-induced arthritis rat model, markedly alleviated the clinical signs, radiology progression, synovial hyperplasia, and inflammatory cells infiltration of joints. Thus, results of this study suggest that activation of the PI3K/Akt/HIF-1α pathway plays a pivotal role in mediating hypoxia-induced EMT transformation and invasion of RA-FLSs under hypoxia.  相似文献   

5.
Mitochondrial fission and fusion are important for mitochondrial function, and dynamin 1‐like protein (DNM1L) is a key regulator of mitochondrial fission. We investigated the effect of mitochondrial fission on mitochondrial function and inflammation in fibroblast‐like synoviocytes (FLSs) during rheumatoid arthritis (RA). DNM1L expression was determined in synovial tissues (STs) from RA and non‐RA patients. FLSs were isolated from STs and treated with a DNM1L inhibitor (mdivi‐1, mitochondrial division inhibitor 1) or transfected with DNM1L‐specific siRNA. Mitochondrial morphology, DNM1L expression, cell viability, mitochondrial membrane potential, reactive oxygen species (ROS), apoptosis, inflammatory cytokine expression and autophagy were examined. The impact of mdivi‐1 treatment on development and severity of collagen‐induced arthritis (CIA) was determined in mice. Up‐regulated DNM1L expression was associated with reduced mitochondrial length in STs from patients with RA and increased RA severity. Inhibition of DNM1L in FLSs triggered mitochondrial depolarization, mitochondrial elongation, decreased cell viability, production of ROS, IL‐8 and COX‐2, and increased apoptosis. DNM1L deficiency inhibited IL‐1β–mediated AKT/IKK activation, NF‐κBp65 nuclear translocation and LC3B‐related autophagy, but enhanced NFKBIA expression. Treatment of CIA mice with mdivi‐1 decreased disease severity by modulating inflammatory cytokine and ROS production. Our major results are that up‐regulated DNM1L and mitochondrial fission promoted survival, LC3B‐related autophagy and ROS production in FLSs, factors that lead to inflammation by regulating AKT/IKK/NFKBIA/NF‐κB signalling. Thus, inhibition of DNM1L may be a new strategy for treatment of RA.  相似文献   

6.
Fibroblast-like synovial cells play a crucial role in the pathophysiology of rheumatoid arthritis (RA), as these cells are involved in inflammation and joint destruction. Apigenin, a dietary plant-flavonoid, is known to have many functions in animal cells including anti-proliferative and anticancer activities, but its role in human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) has not been reported. In this study, we investigated the roles of apigenin in RA-FLSs. The survival rate decreased, and apoptotic cell death was induced by apigenin treatment in RA-FLSs. Apigenin treatment resulted in activation of the mitogen-activated protein kinase (MAPK) ERK1/2, and pretreatment with an ERK inhibitor PD98059 dramatically reduced apigenin-induced apoptosis. We found that apigenin-mediated production of a large amount of intracellular reactive oxygen species (ROS) caused activation of ERK1/2 and apoptosis; treatment with the antioxidant Tiron strongly inhibited the apigenin-induced generation of ROS, phosphorylation of ERK1/2, and apoptotic cell death. Apigenin-induced apoptotic cell death was mediated through activation of the effectors caspase-3 and caspase-7, and was blocked by pretreatment with Z-VAD-FMK (a pan-caspase inhibitor). These results showed that apigenin-induced ROS and oxidative stress-activated ERK1/2 caused apoptotic cell death in apigenin-treated RA-FLSs.  相似文献   

7.
Growing data have indicated that the miR-17–92 cluster is implicated in inflammatory response and rheumatoid arthritis (RA). This study was aimed to investigate the effects of miR-92a on the proliferation and migration of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs). Our results showed that miR-92a was significantly down-regulated in RA synovial tissue and RA-FLSs, whereas the protein level of AKT2 is increased. Restoration of miR-92a suppressed the proliferation and migration of RA-FLSs. Down-regulation of miR-92a promotes proliferation and migration of normal human FLSs. Dual luciferase reporter gene assay showed that miR-92a could specifically bind with the 3′UTR of AKT2 and significantly repressed the luciferase activity. Down-regulation or up-regulation of miR-92a significantly increased or decreased the protein and phosphorylation levels of AKT2. siRNA-mediated down-regulation of AKT2 significantly prevented cell proliferation and migration of RA-FLSs, which were similar to the effects induced by overexpression of miR-92a. Moreover, AKT2 overexpression rescued miR-92a-mediated suppressive effect on proliferation and migration of RA-FLS. Thus, miR-92a could inhibit the proliferation and migration of RA-FLSs through regulation of AKT2 expression.  相似文献   

8.

Introduction

Rheumatoid arthritis (RA) is characterized by synovial lining hyperplasia, in which there may be an imbalance between the growth and death of fibroblast-like synoviocytes (FLSs). Antibodies against citrullinated proteins are proposed to induce RA. This study aimed to investigate the pathogenic role of citrullinated fibronectin (cFn) in RA.

Methods

The distribution of fibronectin (Fn) and cFn in synovial tissues from RA and osteoarthritis (OA) patients was examined by immunohistochemical and double immunofluorescence analysis. FLSs were isolated from RA and OA patients and treated with Fn or cFn. Apoptosis was detected by flow cytometry and TUNEL assay. The expression of survivin, caspase-3, cyclin-B1, Bcl-2 and Bax was detected by real-time PCR. The secretion of proinflammatory cytokines was measured by ELISA.

Results

Fn formed extracellular aggregates that were specifically citrullinated in synovial tissues of RA patients, but no Fn deposits were observed in those of OA patients. Fn induced the apoptosis of RA and OA FLSs while cFn inhibited the apoptosis of RA and OA FLSs. Fn significantly increased the expression of caspase-3 and decreased the expression of survivin and cyclin-B1 in FLSs from RA and OA patients. cFn significantly increased the expression of survivin in RA FLSs. Furthermore, cFn increased the secretion of TNF-α and IL-1 by FLSs.

Conclusions

cFn plays a potential pathophysiologic role in RA by inhibiting apoptosis and increasing proinflammatory cytokine secretion of FLSs.  相似文献   

9.
Liu Y  Mu R  Wang S  Long L  Liu X  Li R  Sun J  Guo J  Zhang X  Guo J  Yu P  Li C  Liu X  Huang Z  Wang D  Li H  Gu Z  Liu B  Li Z 《Arthritis research & therapy》2010,12(6):R210-13

Introduction

Rheumatoid arthritis (RA) is a T-cell-mediated systemic autoimmune disease, characterized by synovium inflammation and articular destruction. Bone marrow mesenchymal stem cells (MSCs) could be effective in the treatment of several autoimmune diseases. However, there has been thus far no report on umbilical cord (UC)-MSCs in the treatment of RA. Here, potential immunosuppressive effects of human UC-MSCs in RA were evaluated.

Methods

The effects of UC-MSCs on the responses of fibroblast-like synoviocytes (FLSs) and T cells in RA patients were explored. The possible molecular mechanism mediating this immunosuppressive effect of UC-MSCs was explored by addition of inhibitors to indoleamine 2,3-dioxygenase (IDO), Nitric oxide (NO), prostaglandin E2 (PGE2), transforming growth factor β1 (TGF-β1) and interleukin 10 (IL-10). The therapeutic effects of systemic infusion of human UC-MSCs on collagen-induced arthritis (CIA) in a mouse model were explored.

Results

In vitro, UC-MSCs were capable of inhibiting proliferation of FLSs from RA patients, via IL-10, IDO and TGF-β1. Furthermore, the invasive behavior and IL-6 secretion of FLSs were also significantly suppressed. On the other hand, UC-MSCs induced hyporesponsiveness of T cells mediated by PGE2, TGF-β1 and NO and UC-MSCs could promote the expansion of CD4+ Foxp3+ regulatory T cells from RA patients. More importantly, systemic infusion of human UC-MSCs reduced the severity of CIA in a mouse model. Consistently, there were reduced levels of proinflammatory cytokines and chemokines (TNF-α, IL-6 and monocyte chemoattractant protein-1) and increased levels of the anti-inflammatory/regulatory cytokine (IL-10) in sera of UC-MSCs treated mice. Moreover, such treatment shifted Th1/Th2 type responses and induced Tregs in CIA.

Conclusions

In conclusion, human UC-MSCs suppressed the various inflammatory effects of FLSs and T cells of RA in vitro, and attenuated the development of CIA in vivo, strongly suggesting that UC-MSCs might be a therapeutic strategy in RA. In addition, the immunosuppressive activitiy of UC-MSCs could be prolonged by the participation of Tregs.  相似文献   

10.
Rheumatoid arthritis (RA) is a chronic autoimmune systemic inflammatory disease that is characterized by synovial inflammation and bone erosion. We have investigated the mechanism(s) by which essential trace metals may initiate and propagate inflammatory phenotypes in synovial fibroblasts. We used HIG-82, rabbit fibroblast-like synovial cells (FLS), as a model system for potentially initiating RA through oxidative stress. We used potassium peroxychromate (PPC, Cr+5), ferrous chloride (FeCl2, Fe+2), and cuprous chloride (CuCl, Cu+) trace metal agents as exogenous pro-oxidants. Intracellular ROS was quantified by fluorescence microscopy and confirmed by flow cytometry (FC). Protein expression levels were measured by western blot and FC, while ELISA was used to quantify the levels of cytokines. Trace metal agents in different valence states acted as exogenous pro-oxidants that generate reactive oxygen species (ROS), which signal through TLR4 stimulation. ROS/TLR4- coupled activation resulted in the release of HMGB1, TNF-α, IL-1β, and IL-10 in conjunction with upregulation of myeloid-related protein (MRP8/14) inflammatory markers that may contribute to the RA pathophysiology. Our results indicate that oxidant-induced TLR4 activation can release HMGB1 in combination with other inflammatory cytokines to mediate pro-inflammatory actions that contribute to RA pathogenesis. The pathway by which inflammatory and tissue erosive changes may occur in this model system possibly underlies the need for functioning anti-HMGB1-releasing agents and antioxidants that possess both dual trace metal chelating and oxidant scavenging properties in a directed combinatorial therapy for RA.  相似文献   

11.
Fibroblast-like synoviocytes (FLSs) play a major role in the pathogenesis of rheumatoid arthritis (RA) by secreting effector molecules that promote inflammation and joint destruction. How these cells become and remain activated is still elusive. Both genetic and environmental factors probably play a role in transforming FLSs into inflammatory matrix-degrading cells. As bacterial products have been detected in the joint and shown to trigger joint inflammation, this study was undertaken to investigate whether a bacterial ligand of integrin alpha5beta1, protein I/II, could contribute to the aggressive behavior of RA FLSs. Protein I/II is a pathogen-associated molecular pattern (PAMP) isolated from oral streptococci that have been identified in the joints of RA patients. The response of RA and osteoarthritis FLSs to protein I/II was analyzed using human cancer cDNA expression arrays. RT-PCR and pro-MMP-3 (pro-matrix metalloproteinase) assays were then performed to confirm the up-regulation of gene expression. Protein I/II modulated about 6% of all profiled genes. Three of these, those encoding IL-6, leukemia inhibitory factor, and MMP-3, showed a high expression level in all RA FLSs tested, whereas the expression of genes encoding other members of the cytokine or MMP-family was not affected. Furthermore, the up-regulation of MMP-3 gene expression was followed by an increase of pro-MMP-3 release. The expression of interferon regulatory factor 1 and fibroblast growth factor-5 was also up-regulated, although the expression levels were lower. Only one gene, that for insulin-like growth factor binding protein-4, was down-regulated in all RA FLSs. In contrast, in osteoarthritis FLSs only one gene, that for IL-6, was modulated. These results suggest that a bacterial ligand of integrin alpha5beta1 may contribute to the aggressive behavior of RA FLSs by inducing the release of pro-inflammatory cytokines and a cartilage-degrading enzyme, such as IL-6 and MMP-3, respectively.  相似文献   

12.
Fibroblast-like synoviocytes (FLSs) play a major role in the pathogenesis of rheumatoid arthritis (RA) by secreting effector molecules that promote inflammation and joint destruction. How these cells become and remain activated is still elusive. Both genetic and environmental factors probably play a role in transforming FLSs into inflammatory matrix-degrading cells. As bacterial products have been detected in the joint and shown to trigger joint inflammation, this study was undertaken to investigate whether a bacterial ligand of integrin α5β1, protein I/II, could contribute to the aggressive behavior of RA FLSs. Protein I/II is a pathogen-associated molecular pattern (PAMP) isolated from oral streptococci that have been identified in the joints of RA patients. The response of RA and osteoarthritis FLSs to protein I/II was analyzed using human cancer cDNA expression arrays. RT-PCR and pro-MMP-3 (pro-matrix metalloproteinase) assays were then performed to confirm the up-regulation of gene expression. Protein I/II modulated about 6% of all profiled genes. Three of these, those encoding IL-6, leukemia inhibitory factor, and MMP-3, showed a high expression level in all RA FLSs tested, whereas the expression of genes encoding other members of the cytokine or MMP-family was not affected. Furthermore, the up-regulation of MMP-3 gene expression was followed by an increase of pro-MMP-3 release. The expression of interferon regulatory factor 1 and fibroblast growth factor-5 was also up-regulated, although the expression levels were lower. Only one gene, that for insulin-like growth factor binding protein-4, was down-regulated in all RA FLSs. In contrast, in osteoarthritis FLSs only one gene, that for IL-6, was modulated. These results suggest that a bacterial ligand of integrin α5β1 may contribute to the aggressive behavior of RA FLSs by inducing the release of pro-inflammatory cytokines and a cartilage-degrading enzyme, such as IL-6 and MMP-3, respectively.  相似文献   

13.
Rheumatoid arthritis (RA) is one of the chronic systemic autoimmune diseases that cardinally affect the joints. Many people all over the world suffer from the disease. Fibroblast-like synoviocytes (FLSs) play a significant role in the occurrence and development of RA. The long noncoding RNA maternally expressed gene 3 (MEG3) is an imprinted gene, which participates in various cancers as a tumor suppressor. Previous studies have shown that nucleotide oligomerization domain (NOD)-like receptors 5 (NLRC5) plays a key role in inflammatory and autoimmune diseases. Nonetheless, we know very little about the biofunctionality of MEG3 during the development of RA. In this paper, we used complete Freund's adjuvant (CFA)-induced rats as RA animal models. The level of MEG3 significantly reduced in CFA-induced synovial tissues and FLSs, whereas the NLRC5 levels were increased. Enforced expression of MEG3 may be responsible for the decreased level of NLRC5 and inflammatory cytokine level. The results of methylation-specific PCR suggested that the MEG3 gene promoter was significantly methylated in CFA-induced synovial tissues and FLSs. More important, hypermethylation of MEG3 promoter could be inhibited by 5-aza-2-deoxycytidine (5-azadC; methylation inhibitor). Besides, the expression of NLRC5 significantly decreased followed by 5-azadc. Furthermore, DNA methyltransferases 1 (DNMT1) increased in CFA-induced synovial tissues and cells. These results indicated that MEG3 regulates RA by targeting NLRC5 potentially.  相似文献   

14.
Extracellular vesicles (Evs) participate in the development of rheumatoid arthritis (RA), but the mechanisms remain unclear. This study aimed to determine the mechanism by which microRNA-34a (miR-34a) contained in bone marrow mesenchymal stem cell (BM-MSC)-derived Evs functions in RA fibroblast-like synoviocytes (RA-FLSs). BM-MSC-derived Evs and an Evs inhibitor were extracted. A rat model of RA was established. miR-34a gain- and loss-of-function experiments were performed, and the inflammation in rat synovial fluid and tissues was detected. The role of miR-34a in RA-FLSs was also measured in vitro. The target gene of miR-34a was predicted using the online software TargetScan and identified using a dual-luciferase reporter gene assay, and the activation of the ATM/ATR/p53 signalling pathway was assessed. BM-MSC-derived Evs mainly elevated miR-34a expression, which reduced RA inflammation in vivo and inhibited RA-FLS proliferation and resistance to apoptosis in vitro, while inhibited miR-34a expression enhanced RA development. In addition, miR-34a could target cyclin I to activate the ATM/ATR/p53 signalling pathway, thus inhibiting abnormal RA-FLS growth and RA inflammation. Our study showed that miR-34a contained in BM-MSC-derived Evs could reduce RA inflammation by inhibiting the cyclin I/ATM/ATR/p53 signalling pathway.  相似文献   

15.
To probe the role of protein arginine methyltransferase 5 (PRMT5) in regulating inflammation, cell proliferation, migration and invasion of fibroblast‐like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA). FLSs were separated from synovial tissues (STs) from patients with RA and osteoarthritis (OA). An inhibitor of PRMT5 (EPZ015666) and short interference RNA (siRNA) against PRMT5 were used to inhibit PRMT5 expression. The standard of protein was measured by Western blot or immunofluorescence. The excretion and genetic expression of inflammatory factors were, respectively, estimated by enzyme‐linked immunosorbent assay (ELISA) and real‐time polymerase chain reaction (PCR). Migration and invasion in vitro were detected by Boyden chamber assay. FLSs proliferation was detected by BrdU incorporation. Increased PRMT5 was discovered in STs and FLSs from patients with RA. In RA FLSs, the level of PRMT5 was up‐regulated by stimulation with IL‐1β and TNF‐α. Inhibition of PRMT5 by EPZ015666 and siRNA‐mediated knockdown reduced IL‐6 and IL‐8 production, and proliferation of RA FLSs. In addition, inhibition of PRMT5 decreased in vitro migration and invasion of RA FLSs. Furthermore, EPZ015666 restrained the phosphorylation of IκB kinaseβ and IκBα, as well as nucleus transsituation of p65 as well as AKT in FLSs. PRMT5 regulated the production of inflammatory factors, cell proliferation, migration and invasion of RA FLS, which was mediated by the NF‐κB and AKT pathways. Our data suggested that targeting PRMT5 to prevent synovial inflammation and destruction might be a promising therapy for RA.  相似文献   

16.
Human fibroblast-like synoviocytes (FLSs) play a role in joint synovial inflammation in rheumatoid arthritis (RA). Some evidence indicates that particulate matter (PM) in air pollution could contribute to the progression of RA. However, more research is needed to clarify this relationship. Up-regulation of cyclooxygenase (COX)-2 and its metabolite prostaglandin E2 (PGE2) are implicated in various inflammatory diseases. Resveratrol, a polyphenol found mainly in grapes and red wine, has antioxidant and anti-inflammatory activities. In the present study, we demonstrated that resveratrol reduced PM-induced COX-2/PGE2 expression in human FLSs, and attenuated PM-enhanced NADPH oxidase activity and ROS generation. In addition, PM induced Akt, ERK1/2, or p38 MAPK activation, which was inhibited by resveratrol. Finally, we demonstrated that PM enhanced NF-κB p65 phosphorylation and the NF-κB promoter activity, which were reduced by pretreatment with a ROS inhibitor or resveratrol. Thus, we concluded that resveratrol functions as a suppressor of PM-induced inflammatory signaling pathways by inhibiting COX-2/PGE2 expression.  相似文献   

17.
Rheumatoid arthritis (RA) is a prototypical autoimmune disorder mainly characterized by joint inflammation and cartilage destruction. Neutrophils actively take part in the initiation and progression of RA. Neutrophils express inflammatory mediators, including cytokines and chemokines. Aberrant formation of neutrophil extracellular traps (NETs) has been demonstrated in the pathogenesis of RA. Thus, neutrophils are regarded as important therapeutic targets in RA treatment. Quercetin is one of the major flavonoids found in fruits and vegetables. Previous studies have demonstrated that quercetin is a potential agent for the treatment of RA. However, the underlying antiarthritic mechanism of quercetin has not been investigated clearly. In this study, we analyzed the therapeutic mechanism of quercetin for RA. Our results showed that quercetin ameliorates inflammation in RA mice by inhibiting neutrophil activities. Quercetin inhibited neutrophil infiltration and reduced the plasma levels of inflammatory cytokines. Quercetin promoted the apoptosis of activated neutrophils. In addition, quercetin inhibited NET formation by suppressing autophagy. These findings suggest that quercetin may be an alternative agent for the treatment of RA by inhibiting neutrophil activities.  相似文献   

18.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by proliferation and insufficient apoptosis of synovial cells. NK4 is a hepatocyte growth factor antagonist and is implicated in cell proliferation, viability, and apoptosis of many tumour cells. This study aimed to investigate the role of NK4 in the regulation of human RA synovial cell proliferation and apoptosis. Fibroblast‐like synoviocytes (FLSs) isolated from RA patients and MH7A synovial cells were subjected to MTT, flow cytometry, and Western blot analysis. We found that NK4 suppressed cell proliferation through cell cycle arrest at the G0/G1 phase and induced apoptosis in RA synovial cells. Furthermore, NK4 altered the expression of cell cycle and apoptosis‐related proteins such as cyclin D1, cyclin B1, PCNA, p21, p53, Bcl‐2, Bax, cleaved caspase‐9, and cleaved caspase‐3. Additionally, NK4 reduced the phosphorylation level of NF‐κB p65 and upregulated the expression of sirt1, but did not change the levels of p38 and p‐p38 in RA‐FLS and MH7A cells. In conclusion, NK4 inhibits the proliferation and induces apoptosis of human RA synovial cells. NK4 is a promising therapeutic target for RA. We demonstrated that NK4 inhibited cell proliferation by inducing apoptosis and arresting cell cycle in RA‐FLS and MH7A cells. The apoptotic effects of NK4 may be mediated in part by decreasing Bcl‐2 protein level, increasing Bax and caspase 3 protein levels, and inhibiting NF‐κB signalling in RA‐FLS and MH7A cells. These findings reveal potential mechanism underlying the role of NK4 in RA synovial cells and suggest that NK4 is a promising agent for RA treatment.  相似文献   

19.
Synovial hyperplasia in rheumatoid arthritis (RA) has been associated with apoptosis deficiency of RA fibroblast-like synoviocytes (FLSs). Celecoxib is a non-steroidal anti-inflammatory drug that has been demonstrated to induce apoptosis in some cellular systems. We have therefore examined the dose- and time-dependent effects of celecoxib on RA FLS viability. Treatment of RA FLSs with celecoxib for 24 hours reduced their viability in a dose-dependent manner. Analysis of celecoxib-treated RA FLSs for their content of apoptotic and necrotic cells by Annexin V staining and TO-PRO-3 uptake displayed only few apoptotic cells. Caspase 3, a key mediator of apoptosis, was not activated in celecoxib-treated RA FLSs, and the presence of specific caspase 3 or pan-caspase inhibitors did not affect celecoxib-induced cell death. Moreover, we could not detect other signs of apoptosis, such as cleavage of poly(ADP-ribose) polymerase, caspase 8 or 9, or DNA fragmentation. We therefore conclude that apoptosis is not the major death pathway in celecoxib-treated RA FLSs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号