首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Skeletal muscle fibers are giant multinucleated cells wherein individual nuclei govern the protein synthesis in a finite volume of cytoplasm; this is termed the myonuclear domain (MND). The factors that control MND size remain to be defined. In the present study, we studied the contribution of the NAD+‐dependent deacetylase, sirtuin 1 (SIRT1), to the regulation of nuclear number and MND size. For this, we isolated myofibers from mice with tissue‐specific inactivation (mKO) or inducible overexpression (imOX) of SIRT1 and analyzed the 3D organisation of myonuclei. In imOX mice, the number of nuclei was increased whilst the average MND size was decreased as compared to littermate controls. Our findings were the opposite in mKO mice. Muscle stem cell (satellite cell) numbers were reduced in mKO muscles, a possible explanation for the lower density of myonuclei in these mice; however, no change was observed in imOX mice, suggesting that other factors might also be involved, such as the functional regulation of stem cells/muscle precursors. Interestingly, however, the changes in the MND volume did not impact the force‐generating capacity of muscle fibers. Taken together, our results demonstrate that SIRT1 is a key regulator of MND sizes, although the underlying molecular mechanisms and the cause‐effect relationship between MND and muscle function remain to be fully defined.  相似文献   

2.
Exercise-induced physical endurance enhancement and skeletal muscle remodeling can prevent and delay the development of multiple diseases, especially metabolic syndrome. Herein, the study explored the association between glucagon-like peptide-1 (GLP-1) secretion and exercise, and its effect on skeletal muscle remodeling to enhance endurance capacity. We found both acute exercise and short-term endurance training significantly increased the secretion of GLP-1 in mice. Recombinant adeno-associated virus (AAV) encoding Gcg (proglucagon) was used to induce the overexpression of GLP-1 in skeletal muscle of mice. Overexpression of GLP-1 in skeletal muscle enhanced endurance capacity. Meanwhile, glycogen synthesis, glucose uptake, type I fibers proportion, and mitochondrial biogenesis were augmented in GLP-1-AAV skeletal muscle. Furthermore, the in vitro experiment showed that exendin-4 (a GLP-1 receptor agonist) treatment remarkably promoted glucose uptake, type I fibers formation, and mitochondrial respiration. Mechanistically, the knockdown of AMPK could reverse the effects imposed by GLP-1R activation in vitro. Taken together, these results verify that GLP-1 regulates skeletal muscle remodeling to enhance exercise endurance possibly via GLP-1R signaling-mediated phosphorylation of AMPK.  相似文献   

3.
This study investigated the effects of resveratrol and miR-22-3p on muscle fiber type conversion in mouse C2C12 myotubes. Here we showed that resveratrol significantly increased the protein level of slow myosin heavy chain (MyHC) and the activities of succinic dehydrogenase and malate dehydrogenase, as well as markedly decreased the protein level of fast MyHC and the activity of lactate dehydrogenase. Immunofluorescence staining showed that resveratrol remarkably upregulated the number of slow MyHC-positive myotubes and downregulated the number of fast MyHC-positive myotubes, suggesting that resveratrol promoted muscle fiber type conversion from fast-twitch to slow-twitch in C2C12 myotubes. We also showed that miR-22-3p had an opposite function on muscle fiber type conversion and resveratrol was able to repress the expression of miR-22-3p. Furthermore, AMP-activated protein kinase (AMPK) inhibitor Compound C and miR-22-3p mimics could attenuate and eliminate muscle fiber type conversion from fast-twitch to slow-twitch cause by resveratrol, respectively. Together, we provided the first evidence that resveratrol promotes muscle fiber type conversion from fast-twitch to slow-twitch via miR-22-3p and AMPK/SIRT1/PGC-1α pathway in C2C12 myotubes.  相似文献   

4.
5.
Intracellular redox and energetic status play a crucial role in cardiovascular diseases and metabolic disorders. The physiological status of reducing agents, such as NADPH and NADH, and of high-energy molecules, such as ATP, is required for antioxidant system activity. For these reasons, an accurate measurement of adenine and pyridine nucleotides is fundamental. In this study we examined the preanalytical phase of reduced pyridine (RPN) and adenine and oxidized pyridine (AOPN) nucleotide assay in human whole blood. Different experimental conditions were applied to RPN alkaline and AOPN acid extracts to find the best analytical performance. Our results show that a good RPN and AOPN linearity (r from 0.994 to 0.999), recovery (near to 100%), and precision (coefficient of variation < 5%) were obtained when supernatant from acid and ultrafiltrate from alkaline extracts were neutralized, frozen, and thawed just before HPLC injection. Since NADH decays rapidly at -80 degrees C, RPN levels must be assayed within 72 h while AOPN can be stored for 1 month at the same temperature. An accurate and quantitative method for nucleotide determination can be obtained by applying the preanalytical conditions proposed in this study.  相似文献   

6.
7.
Accelerated glucose metabolism leads to oxidative stress and DNA damage in cells; these effects are related to glucose toxicity. The precise mechanisms of glucose toxicity are still unclear. The aim of this work was to investigate the mechanism of poly(ADP‐ribose) polymerase 1 (PARP1), which is a DNA repair enzyme activated by high‐glucose‐induced oxidative stress, and its effect on glucose toxicity in HepG2 hepatocytes. HepG2 cells were cultured under normal (5.5 mM) or high (30 mM) glucose conditions for 4 days. PJ34, which is an inhibitor of PARP1, was used to determine the downstream effects of PARP1 activation. PARP1 activity in 30 mM‐glucose‐treated cells was more than that in 5.5 mM‐glucose‐treated cells, and the activity correlated with the increase in ROS generation and DNA damage. PJ34 suppressed PARP1 activation and prevented the high‐glucose‐induced suppression of SIRT1 and AMP‐activated protein kinase (AMPK) activity, which was similar to its effect on the restoration of intracellular nicotinamide adenine dinucleotide (NAD) content. Further, the phosphorylation of insulin receptor was attenuated in response to insulin stimulation under high glucose conditions, and PJ34 could reverse this effect. The results of transfection of HepG2 cells with PARP1 small interfering RNA were similar to those obtained by treatment of the cells with PARP1 inhibitor PJ34. These data suggest that high‐glucose‐induced PARP1 activation might play a role in glucose toxicity by down‐regulating SIRT1 and AMPK activity through NAD depletion and resulting in insulin insensitivity. J. Cell. Biochem. 112: 299–306, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
Melanin concentrating hormone receptor-1 (MCHR1) is a centrally and peripherally expressed receptor that regulates energy expenditure and appetite. Single nucleotide polymorphisms (SNPs) of the MCHR1 gene have been previously associated with obesity, but the results are inconsistent among different populations. This study was performed to determine whether SNPs of MCHR1 affect glucose and energy metabolism. We screened six SNPs of MCHR1 in a cross-sectional study of 217 middle-age, non-diabetic Finnish subjects who were offspring of type 2 diabetic patients. Insulin secretion was evaluated by an intravenous glucose tolerance test and insulin sensitivity and energy metabolism by the hyperinsulinemic euglycemic clamp and indirect calorimetry. SNPs of MCHR1 were not associated with BMI, waist circumference, subcutaneous or intra-abdominal fat area, glucose tolerance, first-phase insulin release, insulin sensitivity, or energy metabolism. One SNP, which was in >0.50 linkage disequilibrium with the other five SNPs, was also screened in 1455 unrelated Finnish middle-age subjects in a population-based study. No differences in BMI, waist circumference, or glucose or insulin levels in an oral glucose tolerance test among the genotypes were found. In conclusion, SNPs of MCHR1 did not have effects on metabolic variables in humans.  相似文献   

10.
11.
12.
Endothelial nitric oxide synthase (eNOS) plays a crucial role in endothelial cell functions. SIRT1, a NAD+-dependent deacetylase, is shown to regulate endothelial function and hence any alteration in endothelial SIRT1 will affect normal vascular physiology. Cigarette smoke (CS)-mediated oxidative stress is implicated in endothelial dysfunction. However, the role of SIRT1 in regulation of eNOS by CS and oxidants are not known. We hypothesized that CS-mediated oxidative stress downregulates SIRT1 leading to acetylation of eNOS which results in reduced nitric oxide (NO)-mediated signaling and endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) exposed to cigarette smoke extract (CSE) and H2O2 showed decreased SIRT1 levels, activity, but increased phosphorylation concomitant with increased eNOS acetylation. Pre-treatment of endothelial cells with resveratrol significantly attenuated the CSE- and oxidant-mediated SIRT1 levels and eNOS acetylation. These findings suggest that CS- and oxidant-mediated reduction of SIRT1 is associated with acetylation of eNOS which have implications in endothelial dysfunction.  相似文献   

13.
LKB1 is a 50 kDa serine/threonine kinase that phosphorylates and activates the catalytic subunit of AMPK at its T-loop residue Thr 172. We prepared adenoviruses expressing the constitutive active (wild-type) form (CA) or dominant negative (kinase inactive, D194A mutant) form (DN) of LKB1 and overexpressed these proteins in cultured myotubes (C2C12 cells) and rat hepatoma cells (FAO cells). When analyzed by immunoblotting with the antibody against Thr172-phosphorylated AMPK, the phosphorylation of AMPK was increased (2.5-fold) and decreased (0.4-fold) in cells expressing CA and DN LKB1, respectively, as compared with Lac-Z expressing control cells. Immunoprecipitation experiments, using isoform-specific antibody, revealed these alterations of AMPK phosphorylation to be attributable to altered phosphorylation of AMPK alpha2, but not alpha1 catalytic subunits, strongly suggesting the alpha2 catalytic subunit to be the major substrate for LKB1 in mammalian cells. In addition, adiponectin or AICAR-stimulated AMPK phosphorylation was inhibited by overexpression of DN LKB1, while phenformin-stimulated phosphorylation was unaffected. These results may explain the difference in AMPK activation mechanisms between AMP and phenformin, and also indicate that AMPK phosphorylation by LKB1 is involved in AMP-stimulated AMPK activation. As a downstream target for AMPK, AICAR-induced glucose uptake and ACCbeta phosphorylation were found to be significantly reduced in DN LKB1 expressing C2C12 cells. The expression of key enzymes for gluconeogenesis, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, was also dependent on LKB1 activities in FAO cells. These results demonstrate that LKB1 is a crucial regulator of AMPK activation in muscle and liver cells and, therefore, that LKB1 activity is potentially of importance to our understanding of glucose and lipid metabolism.  相似文献   

14.
15.
Objective: Long non-coding RNA (lncRNA) KCNQ1OT1 was reported to be tightly associated with tumorigenesis and progression of multiple cancers. However, the expression and biological functions of KCNQ1OT1 in retinoblastoma (RB) are still unknown. We aim to elucidate the potential function and underlying mechanism of KCNQ1OT1 in regulating the progression of RB. Methods: The levels of KCNQ1OT1 were assayed by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) analysis. The cell proliferation of RB cells (Y79 and WERI-Rb-1) were evaluated through Cell Counting Kit 8 (CCK-8) assay. Meanwhile, Y79 and WERI-Rb-1 cell apoptosis and cell cycle were assessed by Flow Cytometry analysis. Dual luciferase reporter assay were performed to illustrate the interaction between KCNQ1OT1, miR-124, and SP1. Results: We found that KCNQ1OT1 was up-regulated and miR-124 was down-regulated in RB tissues and cells. Moreover, knockdown of KCNQ1OT1 reduced the proliferation, migration, and cell cycle, as well as promoted cell apoptosis of Y79 and WERI-Rb-1 cells. Western blot analysis consistently proved cell cycle and apoptosis related protein expression levels. More importantly, KCNQ1OT1 was a sponge of microRNA (miR)-124. MiR-124 inhibition strongly reversed the effect on cell proliferation, cycle arrest, and apoptosis by KCNQ1OT1 knockdown mediation. In addition, KCNQ1OT1 regulated expression of SP1, a direct target of miR-124 in RB. On the other hand, miR-124 inhibitor abrogated the active effect of KCNQ1OT1 silencing on silent information regulator 1 (SIRT1)/c-Jun N-terminal kinase (JNK) signaling pathway. The function of KCNQ1OT1 was verified in vivo. Conclusions: These findings implied that KCNQ1OT1 silencing inhibited RB progression and activated SIRT1/JNK signaling pathway partially by modulating the miR-124/SP1 axis.  相似文献   

16.

Background

IL-15 is believed to play a role in the beneficial impact of exercise on muscle energy metabolism. However, previous studies have generally used supraphysiological levels of IL-15 that do not represent contraction-induced IL-15 secretion.

Methods

L6 myotubes were treated acutely (3?h) and chronically (48?h) with concentrations of IL-15 mimicking circulating (1–10?pg/ml) and muscle interstitial (100?pg/ml ?20?ng/ml) IL-15 levels with the aim to better understand its autocrine/paracrine role on muscle glucose uptake and mitochondrial function.

Results

Acute exposure to IL-15 levels representing muscle interstitial IL-15 increased basal glucose uptake without affecting insulin sensitivity. This was accompanied by increased mitochondrial oxidative functions in association with increased AMPK pathway and formation of complex III-containing supercomplexes. Conversely, chronic IL-15 exposure resulted in a biphasic effect on mitochondrial oxidative functions and ETC supercomplex formation was increased with low IL-15 levels but decreased with higher IL-15 concentrations. The AMPK pathway was activated only by high levels of chronic IL-15 treatment. Similar results were obtained in skeletal muscle from muscle-specific IL-15 overexpressing mice that show very high circulating IL-15 levels.

Conclusions

Acute IL-15 treatment that mimics local IL-15 concentrations enhances muscle glucose uptake and mitochondrial oxidative functions. That mitochondria respond differently to different levels of IL-15 during chronic treatments indicates that IL-15 might activate two different pathways in muscle depending on IL-15 concentrations.

General significance

Our results suggest that IL-15 may act in an autocrine/paracrine fashion and be, at least in part, involved in the positive effect of exercise on muscle energy metabolism.  相似文献   

17.
The role of autophagy and lysosomal degradation pathway in the regulation of skeletal muscle metabolism was previously studied. However, underlying molecular mechanisms are poorly understood. L-lactate which is utilized as an energetic substrate by skeletal muscle can also augment genes expression related to metabolism and up-regulate those being responsive to reactive oxygen species (ROS). Since ROS is the most important regulator of autophagy in skeletal muscle, we tested if there is a link between cellular lactate metabolism and autophagy in differentiated C2C12 myotubes and the gastrocnemius muscle of male wistar rats. C2C12 mouse skeletal muscle was exposed to 2, 6, 10, and 20 mM lactate and evaluated for lactate autophagic effects. Lactate dose-dependently increased autophagy and augmented ROS generation in differentiated C2C12 myotubes. The autophagic effect of lactate deterred in N-acetylcysteine presence (NAC, a ROS scavenger) indicated lactate regulates autophagy with ROS participation. Lactate-induced up-regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) through ROS was required to regulate the autophagy by lactate. Further analysis about ERK1/2 up- and downstream indicated that lactate regulates autophagy through ROS-mediated the activation of ERK1/2/mTOR/p70S6K pathway in skeletal muscle. The in vitro effects of lactate on autophagy also occurred in the gastrocnemius muscle of male Wistar rats. In conclusion, we provided the lactate-associated regulation evidence of autophagy in skeletal muscle by activating ROS-mediated ERK1/2/mTOR/p70S6K pathway. Since the increase in cellular lactate concentration is a hallmark of energy deficiency, the results provide insight into a skeletal muscle mechanism to fulfill its enhanced energy requirement.  相似文献   

18.
WWP2 is a HECT‐type E3 ubiquitin ligase that regulates various physiological and pathological activities by binding to different substrates, but its function and regulatory mechanism in vascular smooth muscle cells (VSMCs) are still unknown. Here, we clarified the role of WWP2 in the regulation of SIRT1‐STAT3 and the impact of this regulatory process in VSMCs. We demonstrated that WWP2 expression was significantly increased in angiotensin II‐induced VSMCs model. Knockdown of WWP2 significantly inhibited angiotensin II‐induced VSMCs proliferation, migration and phenotypic transformation, whereas overexpression of WWP2 had opposite effects. In vivo experiments showed that vascular smooth muscle‐specific WWP2 knockout mice significantly relieved angiotensin II‐induced hypertensive angiopathy. Mechanistically, mass spectrometry and co‐immunoprecipitation assays identified that WWP2 is a novel interacting protein of SIRT1 and STAT3. Moreover, WWP2 formed a complex with SIRT1‐STAT3, inhibiting the interaction between SIRT1 and STAT3, then reducing the inhibitory effect of SIRT1 on STAT3, ensuing promoting STAT3‐K685 acetylation and STAT3‐Y705 phosphorylation in angiotensin II‐induced VSMCs and mice. In conclusion, WWP2 modulates hypertensive angiopathy by regulating SIRT1‐STAT3 and WWP2 suppression in VSMCs can alleviate hypertensive angiopathy vitro and vivo. These findings provide new insights into the treatment of hypertensive vascular diseases.  相似文献   

19.
Idiopathic pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by accumulation of surfactant. Surfactant synthesis and secretion are restricted to epithelial type 2 (T2) pneumocytes (also called T2 cells). Clearance of surfactant is dependent upon T2 cells and macrophages. ABCG1 is highly expressed in both T2 cells and macrophages. ABCG1-deficient mice accumulate surfactant, lamellar body-loaded T2 cells, lipid-loaded macrophages, B-1 lymphocytes, and immunoglobulins, clearly demonstrating that ABCG1 has a critical role in pulmonary homeostasis. We identify a variant in the ABCG1 promoter in patients with PAP that results in impaired activation of ABCG1 by the liver X receptor α, suggesting that ABCG1 basal expression and/or induction in response to sterol/lipid loading is essential for normal lung function. We generated mice lacking ABCG1 specifically in either T2 cells or macrophages to determine the relative contribution of these cell types on surfactant lipid homeostasis. These results establish a critical role for T2 cell ABCG1 in controlling surfactant and overall lipid homeostasis in the lung and in the pathogenesis of human lung disease.  相似文献   

20.
It has been reported that asprosin is a novel adipokine which is augmented in mice and humans with type 2 diabetes (T2DM). Asprosin stimulates hepatic gluconeogenesis under fasting conditions. However, the roles of asprosin in inflammation, endoplasmic reticulum (ER) stress, and insulin resistance in skeletal muscle has not been studied. In the currents study, elevated levels of asprosin expression were observed in adipocytes under hyperlipidemic conditions. Treatment of C2C12 myocytes with asprosin-induced ER stress markers (phosphorylated inositol-requiring enzyme 1 and eukaryotic initiation factor 2, and CHOP expression) as well as inflammation markers (interleukin-6 expression, phosphorylated IκB, and nuclear translocated nuclear factor-κβ). Finally, asprosin treatment promoted exacerbation of insulin sensitivity as determined by levels of insulin receptor substrate 1 and Akt phosphorylation as well as glucose uptake. Moreover, treatment of asprosin augmented protein kinase C-δ (PKCδ) phosphorylation and nuclear translocation, but suppressed messenger RNA expression of sarcoplasmic reticulum Ca2+ ATPase 2b in both C2C12 myocytes and in mouse soleus skeletal muscle. These asprosin-induced effects were markedly decreased in small interfering (si) RNA-mediated PKCδ-knockdown in C2C12 myocytes. These results suggest that asprosin results in impairment of insulin sensitivity in skeletal muscle through PKCδ-associated ER stress/inflammation pathways and may be a valuable strategy for management of insulin resistance and T2DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号