首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Reactive oxygen species (ROS) have been commonly accepted as inducers of autophagy, and autophagy in turn is activated to relieve oxidative stress. Yet, whether and how oxidative stress, generated in various human pathologies, regulates autophagy remains unknown. Here, we mechanistically studied the role of TRPM2 (transient receptor potential cation channel subfamily M member 2)-mediated Ca2+ influx in oxidative stress-mediated autophagy regulation. On the one hand, we demonstrated that oxidative stress triggered TRPM2-dependent Ca2+ influx to inhibit the induction of early autophagy, which renders cells more susceptible to death. On the other hand, oxidative stress induced autophagy (and not cell death) in the absence of the TRPM2-mediated Ca2+ influx. Moreover, in response to oxidative stress, TRPM2-mediated Ca2+ influx activated CAMK2 (calcium/calmodulin dependent protein kinase II) at levels of both phosphorylation and oxidation, and the activated CAMK2 subsequently phosphorylated BECN1/Beclin 1 on Ser295. Ser295 phosphorylation of BECN1 in turn decreased the association between BECN1 and PIK3C3/VPS34, but induced binding between BECN1 and BCL2. Clinically, acetaminophen (APAP) overdose is the most common cause of acute liver failure worldwide. We demonstrated that APAP overdose also activated ROS-TRPM2-CAMK2-BECN1 signaling to suppress autophagy, thereby causing primary hepatocytes to be more vulnerable to death. Inhibiting the TRPM2-Ca2+-CAMK2 cascade significantly mitigated APAP-induced liver injury. In summary, our data clearly demonstrate that oxidative stress activates the TRPM2-Ca2+-CAMK2 cascade to phosphorylate BECN1 resulting in autophagy inhibition.  相似文献   

3.
Mitochondrial bioenergetics and reactive oxygen species (ROS) often play important roles in cellular stress mechanisms. In this study we investigated how these factors are involved in the stress response triggered by resazurin (Alamar Blue) in cultured cancer cells. Resazurin is a redox reactive compound widely used as reporter agent in assays of cell biology (e.g. cell viability and metabolic activity) due to its colorimetric and fluorimetric properties. In order to investigate resazurin‐induced stress mechanisms we employed cells affording different metabolic and regulatory phenotypes. In HL‐60 and Jurkat leukemia cells resazurin caused mitochondrial disintegration, respiratory dysfunction, reduced proliferation, and cell death. These effects were preceded by a burst of ROS, especially in HL‐60 cells which were also more sensitive and contained autophagic vesicles. Studies in Rho0 cells (devoid of mitochondrial DNA) indicated that the stress response does not depend on the rates of mitochondrial respiration. The anti‐proliferative effect of resazurin was confirmed in native acute myelogenous leukemia (AML) blasts. In conclusion, the data suggest that resazurin triggers cellular ROS production and thereby initiates a stress response leading to mitochondrial dysfunction, reduced proliferation, autophagy, and cell degradation. The ability of cells to tolerate this type of stress may be important in toxicity and chemoresistance. J. Cell. Biochem. 111: 574–584, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
The apoptosis of human periodontal ligament cells (HPDLCs) may be an important factor of the negative effect of advanced glycation end products (AGEs) on the periodontal tissue of diabetic patients. However, the pathways or potential effects of apoptosis in AGEs-treated HPDLCs have not been fully elucidated. Autophagy is closely related to apoptosis. Herein, we investigated the potential mechanism of apoptosis and autophagy in HPDLCs treated with AGEs via an in vitro model. We found that AGEs-treated HPDLCs showed a time- and concentration-dependent reduction in the cell survival rate. The mitochondrial-dependent apoptosis was induced in AGEs-treated HPDLCs, as confirmed by the mitochondrial membrane potential depolarization, decreased Bcl-2 expression, increased Bax expression, and increased caspase-3 and PARP cleavage. Autophagy was also induced in AGEs-treated HPDLCs, as indicated by the conversion of LC3-II/LC3-I and the presence of autophagosomes. Interestingly, our study results suggested that apoptosis and autophagy were related to reactive oxygen species (ROS) production. In addition, AGEs-induced autophagy acted as a latent factor in decreasing the generation of ROS in HPDLCs and protecting against the AGEs-induced apoptosis. In summary, our study shows that ROS are essential in AGEs-induced HPDLCs apoptosis and autophagy, which may be a molecular mechanism for the repairment of ROS-induced damage in HPDLCs treated with AGEs to promote cell survival. The present study might provide new insights into the therapeutic targeting of HPDLCs autophagy, which could be an additional strategy for periodontitis in patients with diabetes mellitus.  相似文献   

5.
Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.  相似文献   

6.
Osteosarcoma (OS) is the most common primary malignant bone tumour in adolescence. Lately, light-emitting diodes (LED)-based therapy has emerged as a new promising approach for several diseases. However, it remains unknown in human OS. Here, we found that the blue LED irradiation significantly suppressed the proliferation, migration and invasion of human OS cells, while we observed blue LED irradiation increased ROS production through increased NADPH oxidase enzymes NOX2 and NOX4, as well as decreased Catalase (CAT) expression levels. Furthermore, we revealed blue LED irradiation-induced autophagy characterized by alterations in autophagy protein markers including Beclin-1, LC3-II/LC3-I and P62. Moreover, we demonstrated an enhanced autophagic flux. The blockage of autophagy displayed a remarkable attenuation of anti-tumour activities of blue LED irradiation. Next, ROS scavenger N-acetyl-L-cysteine (NAC) and NOX inhibitor diphenyleneiodonium (DPI) blocked suppression of OS cell growth, indicating that ROS accumulation might play an essential role in blue LED-induced autophagic OS cell death. Additionally, we observed blue LED irradiation decreased EGFR activation (phosphorylation), which in turn led to Beclin-1 release and subsequent autophagy activation in OS cells. Analysis of EGFR colocalization with Beclin-1 and EGFR-immunoprecipitation (IP) assay further revealed the decreased interaction of EGFR and Beclin-1 upon blue LED irradiation in OS cells. In addition, Beclin-1 down-regulation abolished the effects of blue LED irradiation on OS cells. Collectively, we concluded that blue LED irradiation exhibited anti-tumour effects on OS by triggering ROS and EGFR/Beclin-1-mediated autophagy signalling pathway, representing a potential approach for human OS treatment.  相似文献   

7.
Intervertebral disc degeneration (IDD) is closely associated with aging. Our previous studies have confirmed that heme oxygenase-1 (HO-1) can inhibit nucleus pulposus (NP) cell apoptosis. However, whether or not HO-1 is involved in NP cell senescence and autophagy is unclear. Our results indicated that HO-1 expression was reduced in IDD tissues and replicative senescent NP cells. HO-1 overexpression using a lentiviral vector reduced the NP cell senescence level, protected mitochondrial function, and promoted NP cell autophagy through the mitochondrial pathway. Autophagy inhibitor 3-MA pretreatment reversed the anti-senescent and protective effects on the mitochondrial function of HO-1, which promoted the degradation of the extracellular matrix (ECM) in the intervertebral disc. In vivo, HO-1 overexpression inhibited IDD and enhanced autophagy. In summary, these results suggested that HO-1 overexpression alleviates NP cell senescence by inducing autophagy via the mitochondrial route.  相似文献   

8.
9.
We report on a three dimensional (3D)-organotypic culture in vitro for selective growth and expansion of human corneal epithelial stem cells. Limbal corneal explants were cultured on porous collagen sponges submerged in Epilife medium containing 10% fetal bovine serum. The fragments were analyzed by immunohistochemistry for the expression and distribution of a spectrum of corneal epithelium markers: p63, CK-19, CK-3, Ki-67, pan-cytokeratins and vimentin. Early in culture the epithelium began to exfoliate losing its differentiated high-zone layers into the medium, maintaining only basal and few parabasal cells (mostly both p63 and CK-19 positive), which had remained attached to the specimen. After 14 days a new epithelium was formed displaying an increasing prominence of basal and suprabasal cells that, sliding onto the whole explant, showed the tendency to underlay stromal tissue and infiltrate into the underlaying sponge. After 21 days, sponge and fragments were incubated with trypsin-EDTA and dispersed epithelial cells were pipetted on a feeder monolayer of mitomycin-c-treated murine NIH.3T3 fibroblasts. Colonies of undifferentiated epithelial cells (p63, CK-19 and Ki-67 positive, CK-3 negative) were obtained: their cells, if seeded onto a collagen matrix containing embedded primary human corneal fibroblasts as feeder, provided the basic building blocks for reconstructing in vitro a 3D-multilayered corneal epithelium.  相似文献   

10.
11.
Retinal pigment epithelial cells are closely associated with the pathogenesis of diabetic retinopathy. The mechanism by which diabetes impacts retinal pigment epithelial cell function is of significant interest. Sirtuins are an important class of proteins that primarily possess nicotinamide adenine dinucleotide-dependent deacetylases activity and involved in various cellular physiological and pathological processes. Here, we aimed to examine the role of sirtuins in the induction of diabetes-associated retinal pigment epithelial cell dysfunction. High glucose and platelet-derived growth factor (PDGF) treatment induced epithelial–mesenchymal transition and the migration of retinal pigment epithelial cells, and decreased sirtuin-3 expression. Sirtuin-3 knockdown using siRNA increased epithelial–mesenchymal transition and migration of retinal pigment epithelial cells. In contrast, sirtuin-3 overexpression attenuated the effects caused by high glucose and PDGF on epithelial–mesenchymal transition and migration of retinal pigment epithelial cells, suggesting that sirtuin-3 deficiency contributed to retinal pigment epithelial cell dysfunction induced by high glucose and PDGF. Mechanistically, sirtuin-3 deficiency induced retinal pigment epithelial cell dysfunction by the overproduction of mitochondrial reactive oxygen species. These results suggest that sirtuin-3 deficiency mediates the migration of retinal pigment epithelial cells, at least partially by increasing mitochondrial oxidative stress, and shed light on the importance of sirtuin-3 and mitochondrial reactive oxygen species as potential targets in diabetic retinopathy therapy.  相似文献   

12.
《Autophagy》2013,9(10):1462-1476
Reactive oxygen species (ROS) have been implicated as a signal for general autophagy. Both mitochondrial-produced and exogenous ROS induce autophagosome formation. However, it is unclear whether ROS are required for the selective autophagic degradation of mitochondria, a process called mitophagy. Recent work using carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial-uncoupling reagent, has been shown to induce mitophagy. However, CCCP treatment may not be biologically relevant since it causes the depolarization of the entire mitochondrial network. Since mitochondria are the main ROS production sites in mammalian cells, we propose that short bursts of ROS produced within mitochondria may be involved in the signaling for mitophagy. To test this hypothesis, we induced an acute burst of ROS within mitochondria using a mitochondrial-targeted photosensitizer, mitochondrial KillerRed (mtKR). Using mtKR, we increased ROS levels in the mitochondrial matrix, which resulted in the loss of membrane potential and the subsequent activation of PARK2-dependent mitophagy. Importantly, we showed that overexpression of the mitochondrial antioxidant protein, superoxide dismutase-2, can squelch mtKR-induced mitophagy, demonstrating that mitochondrial ROS are responsible for mitophagy activation. Using this assay, we examined the impact of mitochondrial morphology on mitophagy. It was shown recently that elongated mitochondria are more resistant to mitophagy through unknown mechanisms. Here, we show that elongated mitochondria are more resistant to ROS-induced damage and mitophagy compared with fragmented mitochondria, suggesting that mitochondrial morphology has an important role in regulating ROS and mitophagy. Together, our results suggest that ROS-induced mitochondrial damage may be an important upstream activator of mitophagy.  相似文献   

13.
Transforming growth factor beta(2) (TGF-beta(2)), a growth regulator of human lens epithelial cells (HLECs), also regulates the death of these cells. Dose-response analysis showed that the TGF-beta(2) concentration needed to induce HLECs death (100 pg/ml) was 10 times that needed to inhibit growth in these cells (10 pg/ml). TGF-beta(2)-induced apoptosis in HLECs was preceded by an induction of reactive oxygen species (ROS) and a decrease in glutathione in the intracellular content, indicating that this factor induces oxidative stress in HLECs. Studies performed to analyze the levels of c-fos mRNA, a gene whose expression is modulated by the redox state, demonstrated that only high, apoptotic concentrations of TGF-beta(2) (100 pg/ml) produced an increase in the mRNA levels of this gene, the level of induction being similar to that found when cells were incubated in the presence of hydrogen peroxide. Finally, the cell death induced by TGF-beta(2) in HLECs was partially blocked by radical scavengers, which decreased the percentage of apoptotic cells, whereas these agents did not modify the growth-inhibitory effect elicited by TGF-beta(2) in these cells. The results presented in this paper provide evidence for the involvement of an oxidative process in the apoptosis elicited by TGF-beta(2) in HLECs.  相似文献   

14.
Summary In the present study we have established a pure monolayer culture system of human fallopian tube epithelial cells. The cells were isolated using collagenase digestion, and were cultured in Medium 199 supplemented with 15% fetal bovine serum. The epithelial cells derived from primary and secondary culture were characterized using immunocytochemical staining and electron microscopy. The cells continued to grow for 2 to 3 wk once the monolayer culture of the cells was established. It is currently possible to maintain the cultures until the third generation. Proliferation of these cells was enhanced by epidermal growth factor but not by basic-fibroblast growth factor, insulin, transferrin, estradiol-17β, or progesterone. This culture system offers a good model for determining characteristics of the tubal epithelium and would permit effective study of co-culture with embryos.  相似文献   

15.
Despite extensive study, the mechanisms of cell fate choice upon p53 activation remain poorly understood. Using genome-wide shRNA screening, we recently identified the ATM kinase as synthetic lethal with Nutlin-3, an MDM2 inhibitor that leads to non-genotoxic p53 activation. Here, we demonstrate that while this synthetic lethal interaction relies upon components of both the intrinsic and extrinsic apoptotic pathways (e.g., BAX and BID), it is not due to significant ATM effects on the expression of p53 target genes. Instead, loss of ATM activity results in increased mitochondria and reactive oxygen species that drive apoptosis. Finally, we provide evidence that pharmacologic inhibition of ATM blocks autophagy in direct opposition to p53, which activates this process, and that inhibition of autophagy is sufficient to elicit an apoptotic response when combined with Nutlin-3.  相似文献   

16.
The manipulation of autophagy provides a new opportunity for highly effective anticancer therapies. Recently, we showed that photodynamic therapy (PDT) with nitrogen-doped titanium dioxide (N-TiO2) nanoparticles (NPs) could promote the reactive oxygen species (ROS)-dependent autophagy in leukemia cells. However, the differential autophagic effects of N-TiO2 NPs in the dark and light conditions and the potential of N-TiO2-based PDT for the treatment of melanoma cells remain unknown. Here we show that depending on the visible-light condition, the autophagic response of human melanoma A375 cells to N-TiO2 NPs switches between two different statuses (ie., flux or blockade) with the opposite outcomes (ie., survival or death). Mechanistically, low doses of N-TiO2 NPs (1-100 µg/ml) stimulate a nontoxic autophagy flux response in A375 cells, whereas their photo-activation leads to the impairment of the autophagosome-lysosome fusion, the blockade of autophagy flux and consequently the induction of RIPK1-mediated necroptosis via ROS production. These results confirm that photo-controllable autophagic effects of N-TiO2 NPs can be utilized for the treatment of cancer, particularly melanoma.  相似文献   

17.
As the most common selenium derivative, methylseleninic acid (MSA) has attracted wide attention. Its apoptotic induction ability and the possible molecular mechanism in human bladder cancer (BC) J82 and T24 cells were investigated in the present study. We found that the survival of J82 and T24 cells were inhibited in a dose-dependent manner after MSA treatment. Propidium iodide (PI) staining and Annexin V-fluorescein isothiocyanate/PI double staining clarified that MSA stocked cells at G2/M phase and caused apoptosis in J82 and T24 cells. Further, typical morphological features of apoptotic cells were also observed. Accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential were also detected by dichlorodihydrofluorescein diacetate and Rhodamin123 staining. Meanwhile, pretreatment with N-acetylcysteine, an ROS scavenging agent, found that the apoptosis of BC cells induced by MSA was related to the production of ROS. Western blot analysis results showed that MSA interrupted Bax/Bcl-2 balance, stimulated cytochrome c release into the cytoplasm, activated caspase-9 and caspase-3, and finally induced the apoptosis of the BC cells. These findings demonstrated that MSA was able to induce apoptosis in J82 and T24 cells through ROS-mediated mitochondrial apoptosis.  相似文献   

18.
Melanoma is an aggressive skin malignancy with a high mortality rate; however, successful treatment remains a clinical challenge. Ivermectin, a broad-spectrum antiparasitic drug, has recently been characterized as a potential anticancer agent due to its observed antitumor effects. However, the molecular mechanisms of ivermectin remain poorly understood. In the current study, we tested the involvement of autophagy in the ivermectin mechanism of action in human melanoma cells. We exposed SK-MEL-28 cells to different concentrations of ivermectin (2.5, 5, and 10 μM) for 24 hours. Here, ivermectin-induced apoptosis, as evidenced by the upregulation of cleaved poly (ADP-ribose) polymerase, BAX expression, and caspase-3 activity and downregulation of BCL-2 expression. In line with the apoptosis response, ivermectin triggered autophagy. Pharmacological or genetic inhibition of autophagy further sensitized SK-MEL-28 cells to ivermectin-induced apoptosis. Mechanistically, ivermectin-induced TFE3(Ser321) dephosphorylation, activated TFE3 nuclear translocation and increased TFE3 reporter activity, which contributed to lysosomal biogenesis and the expression of autophagy-related genes, and subsequently, initiated autophagy in SK-MEL-28 cells. Moreover, N-acetyl-cysteine, an reactive oxygen species (ROS) scavenger, abrogated the effects of ivermectin on TFE3-dependent autophagy. Taken together, we demonstrated that ivermectin increases TFE3-dependent autophagy through ROS signaling pathways in human melanoma cells and that inhibiting autophagy enhances ivermectin-induced apoptosis in human melanoma cells.  相似文献   

19.
目的:通过体外诱导分化实验,探讨人羊膜上皮细胞(hAECs)向胰岛素分泌细胞(ISCs)分化的能力。方法:采用胰蛋白酶消化法从人羊膜组织分离提取hAECs,用流式细胞仪和免疫细胞化学法进行鉴定。取第3代hAECs在含尼克酰胺和N2补充物的无血清培养基中诱导培养,分别于诱导不同时间采用免疫细胞化学法检测胰岛素和β2微球蛋白的表达,采用放射免疫法检测上清液中胰岛素含量,采用RT-PCR检测胰岛素mRNA和胰十二指肠同源异型盒因子-1(PDX-1)mRNA的表达。结果:①hAECs高表达CD29、CD73、CD166和CK19;②hAECs诱导组第7、142、1天胰岛素阳性细胞百分率分别为74.00%±1.73%、75.33%±1.15%和75.67%±0.58%,而对照组未见胰岛素阳性细胞;③hAECs诱导组第7、14、21天培养物上清液中胰岛素含量分别达(328.47±3.22)μIU/ml、(332.26±1.22)μIU/ml和(329.68±2.57)μIU/ml,均显著高于对照组(P均<0.01);④hAECs诱导前后均有PDX-1 mRNA和β2微球蛋白表达,胰岛素mRNA表达仅见于诱导组。结论:hAECs能分化为ISCs,在Ⅰ型糖尿病细胞移植治疗方面具有潜在应用前景。  相似文献   

20.
Abamectin (ABA) as one of the worldwide used compounds in agriculture has raised safety concerns on nontarget organism toxicity. However, the study of male reproductive system damage caused by ABA remains unclear. Our aim is to investigate the effect of ABA‐induced cytotoxicity in TM3 Leydig cells and their underlying mechanisms. ABA inhibits TM3 cell viability and proliferation via cell cycle arrested in the G0/G1 phase. In addition, ABA‐induced mitochondrial depolarization leads to an imbalance in Bcl‐2 family expression, causing caspase‐dependent apoptosis in TM3 cells. The increased ratio of cells expression LC3 protein and LC3‐II to LC3‐I indicated the activation of autophagy potentially. Further experiments revealed ABA treatment reduced phosphatidylinositol 3‐kinase (PI3K), protein kinase B (AKT) phosphorylation, and mammalian target of rapamycin (mTOR) phosphorylation. Pretreatment with a PI3K/AKT inhibitor, LY294002, mimicked the ABA‐mediated effects on cytotoxicity. Pretreatment with a PI3K/AKT agonist, insulin‐like growth factor‐1, reversed the effects of ABA. ABA caused the accumulation of intracellular reactive oxygen species (ROS) by increased intensity of the ROS indicator. However, N‐acetylcysteine as ROS scavengers inhibited ABA‐induced apoptosis and autophagy and reversed these ABA‐mediated effects on PI3K/AKT/mTOR pathway. On the basis of the above results, it is suggested that ABA exposure induces apoptosis and autophagy in TM3 cells by ROS accumulation to mediate PI3K/AKT/mTOR signaling pathway suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号