共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen Wu Xinfang Hou Shuai Li Suxia Luo 《Journal of biochemical and molecular toxicology》2023,37(8):e23381
Gastric cancer (GC) is the fifth utmost common malignant cancer type globally, in which ferroptosis acts a critical function in the progress of GC. Long noncoding RNA ZEB1-AS1 has been recognized in numerous cancers, but the role of ZEB1-AS1 in ferroptosis remains obscure. Hence, we investigated the efficacy of ZEB1-AS1 on ferroptosis of GC cells. The cell growth and viability were analyzed via cell counting kit assay and xenograft tumor model in vivo and in vitro, respectively. The RNA and protein expression were measured by qRT-PCR and western blot analysis assay, respectively. The levels of Fe2+, malondialdehyde (MDA), and lipid reactive oxygen species (ROS) were tested to determine ferroptosis. The erastin and RSL3 were used to induce ferroptosis. The mechanism was analyzed via luciferase reporter gene and RIP assays. The treatment of ferroptosis inducer Erastin and RSL3 suppressed the viability of GC cells and the ZEB1-AS1 overexpression rescued the phenotype in the cells. The levels of Fe2+, MDA, and ROS were enhanced through the depletion of ZEB1-AS1 in Erastin/RSL3 treated GC cells. ZEB1-AS1 directly sponged miR-429 in GC cells and miR-429 targeted BGN in GC cells, and the inhibition of miR-429 rescued ZEB1-AS1 depletion-inhibited BGN expression. We validated that miR-429 induced and BGN-repressed ferroptosis in cancer cells. The BGN overexpression and miR-429 suppression could reverse the efficacy of ZEB1-AS1 on proliferation and ferroptosis in cancer cells. The expression of ZEB1-AS1 and BGN was enhanced and miR-429 expression was decreased in clinical GC tissues. ZEB1-AS1 attenuated ferroptosis of cancer cells by modulating miR-429/BGN axis. 相似文献
2.
3.
Guoxin Zhang Hongli Li Ruimei Sun Peirui Li Zhiyi Yang Yuanyuan Liu Zhaoyan Wang Yuling Yang Chonggao Yin 《Journal of cellular and molecular medicine》2019,23(5):3271-3279
The triple‐negative breast cancer is the most malignant type of breast cancer. Its pathogenesis and prognosis remain poor despite the significant advances in breast cancer diagnosis and therapy. Meanwhile, long noncoding RNAs (LncRNAs) play a pivotal role in the progression of malignant tumors. In this study, we found that LncRNA‐ZEB2‐AS1 was dramatically up‐regulated in our breast cancer specimens and cells (MDA231), especially in metastatic tumor specimens and highly invasive cells, and high lncRNA‐ZEB2‐AS1 expression is associated with clinicopathologic features and short survival of breast cancer patients. LncRNA‐ZEB2‐AS1 promotes the proliferation and metastasis of MDA231 cells in SCID mice. Thus, it is regarded as an oncogene in triple‐negative breast cancer. It is mainly endo‐nuclear and situated near ZEB2, positively regulating ZEB2 expression and activating the epithelial mesenchymal transition via the PI3K/Akt/GSK3β/Zeb2 signaling pathway. Meanwhile, EGF‐induced F‐actin polymerization in MDA231 cells can be suppressed by reducing lncRNA‐ZEB2‐AS1 expression. The migration and invasion of triple‐negative breast cancer can be altered through cytoskeleton rearrangement. In summary, we demonstrated that lncRNA‐ZEB2‐AS1 is an important factor affecting the development of triple‐negative breast cancer and thus a potential oncogene target. 相似文献
4.
5.
6.
Lung cancer belongs to a leading popular and malignant cancer around the world. However, the root mechanism underlying lung cancer progression remains unclear. Recently, long noncoding RNA (lncRNA) has been identified as important for tumorigenesis. LncRNA MNX1-AS1 is proven to regulate colon adenocarcinoma, cervical cancer, glioblastoma, and ovarian cancer. Whether MNX1-AS1 participates in lung cancer needs investigation. In our research, we found that MNX1-AS1 was dramatically upregulated in lung cancer. MNX1-AS1 upregulation indicated poor prognosis in lung cancer patients. Functionally, MNX1-AS1 promoted lung cancer progression through regulating proliferation, migration, and invasion. Mechanistically, MNX1-AS1 was found to locate in the cytoplasm and interact with miR-527. Through inhibiting miR-527 availability, MNX1-AS1 facilitated BRF2 expression. Restoration of BRF2 rescued defects of proliferation, migration, and invasion caused by MNX1-AS1 knockdown. Taken together, our study found a novel signaling pathway, namely MNX1-AS1/miR-527/BRF2 axis, involved in lung cancer progression. 相似文献
7.
Xiaoyan Zhang Xianlan Zhao Yan Li Yan Zhou Zhenyu Zhang 《Journal of cellular physiology》2019,234(10):17494-17504
Growing evidence has shown that long noncoding RNAs (lncRNAs) play crucial roles in cervical cancer. Dy000sregulation of lncRNA SOX21 antisense RNA 1 (SOX21-AS1) has been reported in several tumors. However, its expression pattern and potential biological function in cervical cancer (CC) have not been investigated. In this study, we first reported that SOX21-AS1 expression was significantly upregulated in both CC tissues and cell lines. High expression of SOX21-AS1 was found to be significantly correlated with Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis and depth of cervical invasion. Further clinical assay confirmed that high SOX21-AS1 expression was associated with shorter overall survival and could be used as a potential prognostic biomarker for CC patients. Functional investigation showed that knockdown of SOX21-AS1 suppressed CC cells proliferation, migration, and invasion, as well as epithelial to mesenchymal transition progress. Furthermore, our data showed that microRNA-7 (miR-7) interacted with SOX21-AS1 by directly targeting the miRNA-binding site in the SOX21-AS1 sequence, and quantitative real-time polymerase chain reaction results showed overexpression of SOX21-AS1 decreased the levels of miR-7 in CC cells. Moreover, we confirmed that miR-7 directly targeted the 3′-untranslated region of voltage dependent anion channel 1 (VDAC1). Final in vitro assay suggested that in CC cells with SOX21-AS1, VDAC1 overexpression resulted in an increase of cell proliferation, migration, and invasion. Overall, our findings illuminate how SOX21-AS1 formed a regulatory network to confer an oncogenic function in CC and SOX21-AS1 could be regarded as an efficient therapeutic target and potential biomarker for CC patients. 相似文献
8.
9.
Osteosarcoma (OS) is the most frequent type of cancer that starts in the bones, with a rather high tendency to metastasize to other bones at the early stages. Although many types of research have demonstrated that long noncoding RNAs commonly take part in the development of various cancers, the modulating mechanism of LEF1-AS1 in OS was unknown yet. In this study, our results disclosed that LEF1-AS1, as well as LEF1, had higher expression levels in OS cells than that in normal bone cells. LEF1-AS1 knockdown dramatically inhibited the proliferation, migration, as well as invasion in OS, which proved that LEF1-AS1 contributed to the growth of OS. Furthermore, HNRNPL knockdown suppressed the expression of LEF1. LEF1-AS1 was confirmed to sponge HNRNPL and HNRNPL could bind with LEF1. Both LEF1-AS1 and HNRNPL could enhance the stability of LEF1 mRNA. LEF1-AS1 acted as a promoter in stimulating the Wnt signaling pathway in OS. In rescue experiments, overexpression of LEF1 partially offset the inhibition LEF1-AS1 knockdown brought in the proliferation, migration as well as invasion of OS cells. Collectively, this study had investigated that LEF1-AS1 bound with HNRNPL to promote OS cell proliferation, migration as well as invasion by enhancing the messenger RNA stability of LEF1. 相似文献
10.
11.
Silvia García-Adrián Lucía Trilla-Fuertes Angelo Gámez-Pozo Cristina Chiva Rocío López-Vacas Elena López-Camacho Andrea Zapater-Moros María I. Lumbreras-Herrera David Hardisson Laura Yébenes Pilar Zamora Eduard Sabidó Juan Ángel Fresno Vara Enrique Espinosa 《Proteomics》2022,22(3):2100110
Triple negative breast cancer accounts for 15%–20% of all breast carcinomas and is clinically characterized by an aggressive phenotype and poor prognosis. Triple negative tumors do not benefit from targeted therapies, so further characterization is needed to define subgroups with potential therapeutic value. In this work, the proteomes of 125 formalin-fixed paraffin-embedded samples from patients diagnosed with non-metastatic triple negative breast cancer were analyzed using data-independent acquisition + in a LTQ-Orbitrap Fusion Lumos mass spectrometer coupled to an EASY-nLC 1000. 1206 proteins were identified in at least 66% of the samples. Hierarchical clustering, probabilistic graphical models and Significance Analysis of Microarrays were combined to characterize proteomics-based molecular groups. Two molecular groups were defined with differences in biological processes such as glycolysis, translation and immune response. These two molecular groups showed also several differentially expressed proteins. This clinically homogenous dataset may serve to design new therapeutic strategies in the future. 相似文献
12.
Mohammad-Nazir Menbari Karim Rahimi Abbas Ahmadi Samira Mohammadi-Yeganeh Anvar Elyasi Nikoo Darvishi Vahedeh Hosseini Mohammad Abdi 《Journal of cellular physiology》2020,235(3):2631-2642
Triple negative breast cancer (TNBC) is a heterogeneous subclass of breast cancer (BC) distinguished by lack of hormone receptor expression. It is highly aggressive and difficult to treat with traditional chemotherapeutic regimens. Targeted-therapy using microRNAs (miR) has recently been proposed to improve the treatment of TNBC in the early stages. Here, we explore the roles of miR-483-3p/HDAC8 HDAC8 premiR-vector on tumorigenicity in TNBC patients. Clinical TNBC specimens and three BC cell lines were prepared. miR-483-3p and expression levels were measured using quantitative real-time polymerase chain reaction. Cell cycle progression was assessed by a flow-cytometry method. We also investigated cell proliferation by 3-2, 5-diphenyl tetrazolium bromide assay and colony formation assay. We used a to overexpress miR-483-3p, and a HDAC8-KO-vector for knocking out the endogenous production of HDAC8. Our data showed significant downregulation of miR-483-3p expression in TNBC clinical and cell line samples. The HDAC8 was also upregulated in both tissue specimens and BC cell lines. We found that increased levels of endogenous miR-483-3p affects tumorigenecity of MDA-MB-231. Downregulation of HDAC8 using the KO-vector showed the same pattern. Our results revealed that the miR-483-3p suppresses cellular proliferation and progression in TNBC cell lines via targeting HDAC8. Overall, our outcomes demonstrated the role of miR-483-3p as a tumor suppressor in TNBC and showed the possible mechanism via HDAC8. In addition, targeted treatment of TNBC with miR-483-3p might be considered in the future. 相似文献
13.
Yanmei Shi Jinfen Zha Manzhen Zuo Qian Yan Huamei Song 《Journal of cellular biochemistry》2020,121(3):2655-2663
Endometrial cancer (EC) is deemed to be the most typical gynecologic malignant tumor. Despite the incidence of EC being lower in Asia than that in western countries, substantial increased incidence has been observed in the past few decades in Asia. Although various molecular testing methods and genomic science have developed, the overall prognosis is still disappointing. LncRNAs have been found to influence the progression of various cancers. CHL1-AS1 has been found to be upregulated in ovarian endometriosis, nevertheless, the molecular mechanism and biological function of CHL1-AS1 in EC have not been explored. In our exploration, both CHL1-AS1 and CHL1 were upregulated in EC cells. Knockdown of CHL1-AS1 or CHL1 inhibited cell proliferation and migration in EC. Furthermore, microRNA-6076 (miR-6076) could bind with CHL1-AS1 or CHL1, and regulate the expression of CHL1. Finally, absence of miR-6076 or overexpression of CHL1 can partially rescue the effect of CHL1-AS1 knockdown or miR-6076 upregulation on cell proliferation and migration, respectively. All in all, our research was the first endeavor to study the underlying mechanism of CHL1-AS1 in EC and confirmed that CHL1-AS1 regulated EC progression via targeting the miR-6076/CHL1 axis, offering new insight into treating EC. 相似文献
14.
15.
ObjectiveMounting evidence demonstrates that long non-coding RNA (lncRNA) is dysregulated in breast cancers. This study was designed to detect the influences and regulatory mechanism of lncRNA PDCD4-AS1 in triple-negative breast cancer (TNBC).MethodsqRT-PCR and Western blot were utilized to investigate the expression levels of PDCD4-AS1, miR-10b-5p and IQGAP2 in TNBC tissues and cells. Online software and luciferase reporter gene system were employed to testify the interactions among these molecules. Loss and gain of function of PDCD4-AS1, miR-10b-5p or IQGAP2 were performed before MTT and colony formation assay, TUNEL staining in addition to Transwell and scratch assays were applied to measure the cell biological functions.ResultsIn this work, PDCD4-AS1 and IQGAP2 were lowly expressed while miR-10b-5p was strongly expressed in TNBC tissues and cells. PDCD4-AS1 or IQGAP2 overexpression effectively attenuated TNBC cell proliferation, migration and invasion, and increased the apoptosis rate, while this effect was abandoned in response to miR-10b-5p mimics transfection. miR-10b-5p bound to IQGAP2 and acted as a downstream target of PDCD4-AS1.ConclusionOur findings identified lncRNA PDCD4-AS1 as a tumor suppressor in TNBC by regulating IQGAP2 expression via miR-10b-5p, giving a novel insight into the regulatory mechanism of PDCD4-AS1 in the pathogenesis of TNBC. 相似文献
16.
Long noncoding RNAs (lncRNAs) have been recognized as cancer-associated biological molecules, favoring hepatocellular carcinoma (HCC) progression. This study was conducted to elucidate the effects lncRNA lymphoid enhancer-binding Factor 1 antisense RNA (LEF1-AS1) on the pathological development of HCC, along with the crosstalk involving microRNA-136-5p (miR-136-5p) and with-no-K (lysine) kinase 1 (WNK1). The study recruited primary HCC tissues and their corresponding nonneoplastic liver tissues. The gain- and loss-of-function studies were performed in HCC cells HuH-7 and tumor xenografts in nude mice. The dual luciferase reporter gene assay system, RNA pull-down, and radioimmunoprecipitation assays were applied to detect their interactions among lncRNA LEF1-AS1, miR-136-5p, and WNK1. 5-Ethynyl-2′-deoxyuridine staining, scratch test, Transwell assays, and in vitro tube formation assays were conducted to examine HCC cell proliferation, migration, and invasion and HUVEC angiogenesis. HCC tissues and cells contained high lncRNA LEF1-AS1 expression. LncRNA LEF1-AS1 upregulation triggered markedly increased HCC cell proliferation, migration, and invasion and human umbilical vein endothelial cell angiogenesis. In vivo silencing lncRNA LEF1-AS1 resulted in reduced tumor cell vitality and matrix metalloproteinase-9 and the vascular endothelial growth factor expression. Additionally, the role of lncRNA LEF1-AS1 was found to be largely dependent on WNK1. Association of lncRNA LEF1-AS1 with WNK1 blocked the inhibitory effect of miR-136-5p on WNK1, which was confirmed by in vivo experiments. Altogether, our results revealed an important role of lncRNA LEF1-AS1 in regulating the HCC progression by regulating WNK1, providing a potential biomarker for the therapeutic modalities regarding HCC. 相似文献
17.
《Cell calcium》2019
The triple-negative breast cancer (TNBC) that comprises approximately 10%–20% of breast cancers is an aggressive subtype lacking effective therapeutics. Among various signaling pathways, mTORC1 and purinergic signals have emerged as potentially fruitful targets for clinical therapy of TNBC. Unfortunately, drugs targeting these signaling pathways do not successfully inhibit the progression of TNBC, partially due to the fact that these signaling pathways are essential for the function of all types of cells. In this study, we report that TRPML1 is specifically upregulated in TNBCs and that its genetic downregulation and pharmacological inhibition suppress the growth of TNBC. Mechanistically, we demonstrate that TRPML1 regulates TNBC development, at least partially, through controlling mTORC1 activity and the release of lysosomal ATP. Because TRPML1 is specifically activated by cellular stresses found in tumor microenvironments, antagonists of TRPML1 could represent anticancer drugs with enhanced specificity and potency. Our findings are expected to have a major impact on drug targeting of TNBCs. 相似文献
18.
The critical role of long noncoding RNAs (lncRNAs) in the development of multiple cancers has been revealed either functioning as a tumor initiator or a cancer suppressor. A widely recognized OIP5 antisense RNA 1 (lncRNA OIP5-AS1) has been validated to be an essential regulator of the tumorigenesis of various malignancies. Whereas, the potential role and the exact mechanism of lncRNA OIP5-AS1 by which OIP5-AS1 mediates gastric cancer (GC) progression remains vague. Therefore, first our work probed its expression levels in GC cell lines and related normal cells by real-time quantitative polymerase chain reaction. The heightened level of OIP5-AS1 was detected in GC cell lines. In terms of its cellular effects, we performed a series of functional experiments and as presented in the assays, the proliferative potential and motility was diminished. However, more apoptotic cells were induced with the introduction of OIP5-AS1 silencing. Meanwhile, higher Nod-like receptor pyrin domain-containing protein 6 (NLRP6) and enhancer of zeste homolog 2 (EZH2) expression in the GC cells was monitored. Besides, OIP5-AS1 was disclosed to locate mainly in the nucleus. In terms of mechanism, OIP5-AS1 directly bound to EZH2 and obstructed NLRP6 expression, speeding up GC progression. 相似文献
19.
Qiong Wu Min Shi Wenying Meng Yugang Wang Pingping Hui Jiali Ma 《Journal of cellular physiology》2019,234(12):21889-21902
More and more documents have proved that the abnormal expression of long noncoding RNAs (lncRNAs) are correlated with the initiation and progression of colorectal cancer (CRC). lncRNA FOXD3-AS1 has been reported in glioma for its oncogenic property. According to the survival analysis of The Cancer Genome Atlas database, FOXD3-AS1 upregulation implied lower survival rate of patients with CRC. Quantitative real-time polymerase chain reaction showed the overexpression of FOXD3-AS1 in both CRC tissues and cells. The Kaplan–Meier method demonstrated the prognostic value of FOXD3-AS1 for patients with CRC. To explore the effect of FOXD3-AS1 on CRC progression, loss-of-function experiments were carried out, whose results indicated that knockdown of FOXD3-AS1 suppressed cell proliferation, migration, and invasion, inhibited cell cycle and promoted cell apoptosis in vitro. In vivo experiments affirmed that FOXD3-AS1 affected tumor growth. FOXD3-AS1 expression was enriched in the cytoplasm of CRC cells. Mechanism experiments revealed that FOXD3-AS1 served as a competing endogenous RNA to upregulate SIRT1 by sponging miR-135a-5p. In addition, SIRT1 silencing also restrained cell proliferation and motility. Rescue assays revealed the biological function of FOXD3-AS1/miR-135a-5p/SIRT1 axis in CRC progression. In conclusion, FOXD3-AS1 promotes CRC progression by regulating miR-135a-5p/SIRT1 axis, shedding lights on the way to CRC treatments. 相似文献
20.
ULK1 (unc-51 like autophagy activating kinase 1) is well known to be required to initiate the macroautophagy/autophagy process, and thus activation of ULK1-modulating autophagy/autophagy-associated cell death (ACD) may be a possible therapeutic strategy in triple negative breast cancer (TNBC). Here, our integrated The Cancer Genome Atlas (TCGA) data set, tissue microarray-based analyses and multiple biologic evaluations together demonstrate a new small-molecule activator of ULK1 for better understanding of how ULK1, the mammalian homolog of yeast Atg1, as a potential drug target can regulate ACD by the ULK complex (ULK1-ATG13-RB1CC1/FIP200-ATG101), as well as other possible ULK1 interactors, including ATF3, RAD21 and CASP3/caspase3 in TNBC. Moreover, such new inspiring findings may help us discover that this activator of ULK1 (LYN-1604) with its anti-tumor activity and ACD-modulating mechanisms can be further exploited as a small-molecule candidate drug for future TNBC therapy. 相似文献