首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective:To explore the role and mechanism of chondrogenic bone marrow mesenchymal stem cells (BMSCs)-derived exosomes on Rheumatoid arthritis (RA).Methods:The chondrogenesis of BMSCs was induced by chondrogenic medium. Exosomes from BMSCs and chondrogenic BMSCs were isolated and characterized by transmission electron microscope (TEM), laser particle size analyzer and western blot. ELISA was used to analyze the expression levels of pro-inflammatory cytokines and matrix metalloproteinases (MMPs). Western bolt was performed to assess MAPK and NF-κB pathways expression. The inflammation score and the pathological damage of RA mice were evaluated. Luciferase reporter assay and RIP were carried out to examine the relationship between microRNA-205-5p (miR-205-5p) and mouse double minute 2 (MDM2).Results:Chondrogenic BMSCs-derived exosomes suppressed pro-inflammatory cytokines, MMPs and MAPK and NF-κB pathways in RA-FLSs. miR-205-5p had a high expression in chondrogenic BMSCs-derived exosomes. Functionally, exosomal miR-205-5p also played the anti-inflammation effects. Besides, MDM2 was a direct target of miR-205-5p. Additionally, chondrogenic BMSCs-secreted exosomal miR-205-5p suppressed the inflammation score, joint destruction, and inflammatory response in collagen-induced arthritis (CIA) mice through MDM2.Conclusion:Chondrogenic BMSCs-derived exosomal miR-205-5p suppressed inflammatory response, MAPK and NF-κB pathways through MDM2 in RA, indicating exosomal miR-205-5p might be a potential target for RA treatment.  相似文献   

2.
3.
Colorectal cancer (CRC) is a form of cancer developing from either the colon or rectum. Nowadays, research supports the functionality of exosome expressing microRNAs (miRNAs) as potential biomarker for various cancers including CRC. This study was performed with the intent of investigating the roles of both bone marrow-derived mesenchymal stem cells (BMSCs) and exosomal miR-16-5p in CRC by regulating integrin α2 (ITGA2). A microarray-based analysis was conducted to screen the CRC-associated differentially expressed genes (DEGs) as well as potential regulatory miRNAs. Next, the role of miR-16-5p in terms of its progression in association with CRC was determined. Subsequently, CRC cells were exposed to exosomes secreted by BMSCs transfected with miR-16-5p, isolated and cocultured with CRC cells in an attempt to identify the role of exosomes. Effects of BMSCs-derived exosomes overexpressing miR-16-5p on biological functions of CRC cells and tumorigenicity were all subsequently detected. Effects of miR-16-5p treated with CRC cells in regard to CRC in vivo were also measured. ITGA2 was overexpressed, while miR-16-5p was poorly expressed in CRC cells and miR-16-5p targeted ITGA2. The in vitro experiments revealed that the BMSCs-derived exosomes overexpressing miR-16-5p inhibited proliferation, migration, and invasion, while simultaneously stimulating the apoptosis of the CRC cells via downregulation of ITGA2. Furthermore, the results of in vivo experiments confirmed that the BMSCs-derived exosomes overexpressing miR-16-5p repressed the tumor growth of CRC. Collectively, BMSCs-derived exosomes overexpressing miR-16-5p restricted the progression of CRC by downregulating ITGA2.  相似文献   

4.
Mesenchymal stem cells (MSCs) are a class of pluripotent cells that can release a large number of exosomes which act as paracrine mediators in tumour-associated microenvironment. However, the role of MSC-derived exosomes in pathogenesis and progression of cancer cells especially osteosarcoma has not been thoroughly clarified until now. In this study, we established a co-culture model for human bone marrow-derived MSCs with osteosarcoma cells, then extraction of exosomes from induced MSCs and study the role of MSC-derived exosomes in the progression of osteosarcoma cell. The aim of this study was to address potential cell biological effects between MSCs and osteosarcoma cells. The results showed that MSC-derived exosomes can significantly promote osteosarcoma cells’ proliferation and invasion. We also found that miR-21-5p was significantly over-expressed in MSCs and MSC-derived exosomes by quantitative real-time polymerase chain reaction (qRT-PCR), compared with human foetal osteoblastic cells hFOB1.19. MSC-derived exosomes transfected with miR-21-5p could significantly enhance the proliferation and invasion of osteosarcoma cells in vitro and in vivo. Bioinformatics analysis and dual-luciferase reporter gene assays validated the targeted relationship between exosomal miR-21-5p and PIK3R1; we further demonstrated that miR-21-5p-abundant exosomes derived human bone marrow MSCs could activate PI3K/Akt/mTOR pathway by suppressing PIK3R1 expression in osteosarcoma cells. In summary, our study provides new insights into the interaction between human bone marrow MSCs and osteosarcoma cells in tumour-associated microenvironment.  相似文献   

5.
Emerging evidence indicates that osteoclasts from osteosarcoma patients have higher tartrate resistant acid phosphatase (TRAP) activity. Exosomes are important mediators of the cell-to-cell communication. However, whether osteosarcoma cell–derived exosomes mediate the osteoclastogenesis of bone marrow-derived monocytes (BMDMs) and its mechanisms are largely unknown. In this research, we validated the communication between osteosarcoma cells and BMDMs. Here, we found that osteosarcoma cell-derived exosomes can be transfered to BMDMs to promote osteoclast differentiation. The miR-501-3p is highly expressed in exosomes derived from osteosarcoma and could be transferred to BMDMs through the exosomes. Moreover, osteosarcoma-derived exosomal miR-501-3p mediate its role in promoting osteoclast differentiation and aggravates bone loss in vitro and in vivo. Mechanistically, osteosarcoma cell-derived exosomal miR-501-3p could promote osteoclast differentiation via PTEN/PI3K/Akt signaling pathway. Collectively, our results suggest that osteosarcoma-derived exosomal miR-501-3p promotes osteoclastogenesis and aggravates bone loss. Therefore, our study reveals a novel mechanism of osteoclastogenesis in osteosarcoma patients and provides a novel target for diagnosis or treatment.  相似文献   

6.
ObjectiveCancer-associated fibroblasts (CAFs) function as a crucial factor in tumor progression by carrying exosomes to neighboring cells. This study was assigned to expound the underlying mechanism of CAFs-derived exosomal miR-210 in non-small cell lung cancer (NSCLC) progression.MethodCAFs and normal fibroblasts (NFs) were isolated and identified. Exosomes secreted from CAFs and NFs were isolated to analyze their effects on tumor volume and epithelial-mesenchymal transition (EMT). Exosomal miR-210 expression level was measured. The effects of exosomal miR-210 and UPF1 on cell viability, EMT, PTEN/PI3K/AKT signal pathway were determined. Dual-luciferase reporter gene assay was utilized to validate the binding of UPF1 to miR-210.ResultsCAFs-derived exosomes (CAFs-exo) were successfully extracted and proven to be uptake by lung cancer cells. Up-regulated expression level of miR-210 was found in CAFs-exo, which was then proved to enhance cell migration, proliferation, invasion abilities and EMT in NSCLC cells. Overexpression of miR-210 can also inhibit UPF1 and PTEN, but activate the PTEN/PI3K/AKT pathway. UPF1 was a target gene of miR-210. MiR-210 can up-regulate UPF1 expression level to activate PTEN/PI3K/AKT pathway.ConclusionMiR-210 secreted by CAFs-exo could promote EMT by targeting UPF1 and activating PTEN/PI3K/AKT pathway, thereby promoting NSCLC migration and invasion.  相似文献   

7.
Osteosarcoma (OS) is a kind of malignant tumor originating from mesenchymal tissues. Bone mesenchymal stem cells-derived extracellular vesicles (BMSCs-EVs) can play important roles in OS. This study investigated the mechanism of BMSCs-EVs on OS. BMSC surface antigens and adipogenic and osteogenic differentiation were detected by flow cytometry, and oil red O and alizarin red staining. EVs were isolated from BMSCs by differential centrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot (WB). miR-206 and neurensin-2 (NRSN2) levels in human osteoblast hFOB 1.19 or OS cells (143B, MG-63, Saos2, HOS) were detected by RT-qPCR. Human OS cells with lower miR-206 levels were selected and treated with BMSCs-EVs or pSUPER-NRSN2. The uptake of EVs by 143B cells, cell proliferation, apoptosis, invasion, and migration were detected by immunofluorescence, 5-ethynyl-2’-deoxyuridine (EdU) and colony formation assays, flow cytometry, scratch test, and transwell assays. The binding sites between miR-206 and NRSN2 were predicted by Starbase database and verified by dual-luciferase assay. The OS xenograft model was established and treated with BMSCs-EVs. Tumor growth rate and volume, cell proliferation, and p-ERK1/2, ERK1/2, and Bcl-xL levels were detected by vernier caliper, immunohistochemistry, and WB. BMSCs-EVs were successfully extracted. miR-206 was diminished and NRSN2 was promoted in OS cells. BMSCs-EVs inhibited proliferation, migration, and invasion, and promoted apoptosis of OS cells. BMSCs-EVs carried miR-206 into OS cells. Inhibition of miR-206 in EVs partially reversed the inhibitory effect of EVs on malignant behaviors of OS cells. miR-206 targeted NRSN2. Overexpression of NRSN2 reversed the inhibitory effect of EVs on OS cells. NRSN2 activated the ERK1/2-Bcl-xL pathway. BMSC-EVs inhibited OS growth in vivo. In summary, BMSC-EVs targeted NRSN2 and inhibited the ERK1/2-Bcl-xL pathway by carrying miR-206 into OS cells, thus inhibiting OS progression.Key words: Osteosarcoma, bone mesenchymal stem cells, extracellular vesicle, miR-206, NRSN2, ERK1/2- Bcl-xL  相似文献   

8.
Ischemic stroke causes severe brain damage and remains one of the leading causes of morbidity and mortality worldwide. The microRNA-134 (miR-134) is involved in regulating the process of ischemia injury in neural cells and brain with ischemia stroke. The role of miR-134 in ischemic stroke remains poorly understood. The purpose of the current study was to investigate the effect of bone marrow–derived mesenchymal stem cells (BMSCs)-derived exosomal miR-134 on rat oligodendrocytes (OLs) apoptosis and its underlying mechanism of action. The results demonstrated that levels of miR-134 in BMSCs-exosome decreased but increased incaspase-8 after oxygen-glucose deprivation (OGD) treatment. Exosomal miR-134 significantly inhibited apoptosis by decreasing caspase-8 expression and activity in OGD-treated group cultured with BMSCs-exosome and OLs. In addition, the miR-134 mimics decreased caspase-8 expression in OGD-treated OLs, whereas miR-134 inhibitors exacerbated the changes in the expression of the procaspase-8 and caspase-8 cleaved product proteins caused by OGD. The caspase-8 knockdown using caspase-8 small interfering RNA decreased OLs apoptosis, reversing the improvements that the miR-134 inhibited cells apoptosis by targeting caspase-8. Taken together, these results demonstrated that BMSCs-derived exosomes suppressed OLs apoptosis through exosomal miR-134 by negatively regulating the caspase-8-dependent apoptosis pathway and may, therefore, be a novel potential therapeutic target for ischemic stroke treatment.  相似文献   

9.
MicroRNAs (miRNAs) serve as gene silencers involved in essential cell functions. The role of miR-206 and E74-like factor 3 (Elf3) has been identified in osteoarthritis (OA), while the effect of exosomal miR-206 from bone marrow mesenchymal stem cells (BMSCs) in OA remains largely unknown. Thus, we aim to explore the role of exosomal miR-206 from BMSCs in OA with the involvement of Elf3. BMSCs and BMSC-derived exosomes (BMSC-exos) were obtained and identified. OA mouse models were constructed by anterior cruciate ligament transection and then treated with BMSC-exos or BMSC-exos containing miR-206 mimic/inhibitor. The expression of miR-206, Elf3, inflammatory factors, osteocalcin (OCN) and bone morphogenetic protein 2 (BMP2) in mouse femoral tissues was assessed. The pathological changes in mouse femur tissues were observed. The mouse osteoblasts were identified and treated with untransfected or transfected BMSC-exos, and then, the expression of miR-206, Elf3, OCN and BMP2 was determined. The alkaline phosphatase (ALP) activity, calcium deposition level, OCN secretion, proliferation, apoptosis and cell cycle arrest in osteoblasts were measured. MiR-206 was down-regulated while Elf3 was up-regulated in OA animal and cellular models. Exosomal miR-206 ameliorated inflammation and increased expression of OCN and BMP2 in mouse femoral tissues. Moreover, exosomal miR-206 promoted ALP activity, calcium deposition level, OCN secretion and proliferation and inhibited apoptosis in OA osteoblasts. Overexpressed Elf3 reversed miR-206 up-regulation-induced effects on OA osteoblasts. BMSC-derived exosomal miR-206 promotes proliferation and differentiation of osteoblasts in OA by reducing Elf3. Our research may provide novel targets for OA treatment.  相似文献   

10.
11.
A failure of bone marrow mesenchymal stem cells (BM-MSCs) to adhere to hematopoietic cells is an essential cause of the progression of chronic myelogenous leukemia and is also a cause of failure of bone marrow (BM) transplantation, but the exact mechanisms of this have not been fully elucidated. Recent studies have indicated that microRNAs (miRNAs) are contained in leukemia-derived exosomes and are involved in modulating the BM microenvironment. In this study, we found that K562 cell-derived exosomes transfer miR-711 to BM-MSCs and suppress the adhesive function of BM-MSCs. Using qRT-PCR, we also confirmed a significantly higher level of miR-711 in exosomes derived from K562 cells than in exosomes derived from parental cells. The BM-MSCs co-cultured with exosomes derived from K562 cells showed a lower adhesion rate than did controls. We further demonstrated that exosomal transfer of miR-711 induced decreased adhesive abilities by inhibiting expression of adhesion molecule CD44 in BM-MSCs. In conclusion, our study reveals that K562 cell-derived exosomal miR-711 can be transferred to BM-MSCs and weaken adhesive abilities by silencing the expression of the adhesion molecule CD44.  相似文献   

12.
There is emerging evidence of bioactive material transport by exosomes in melanoma. However, the functions of exosome content underlying such cancer progression remain largely unknown. We aimed at determining whether exosome secretion contributes to cellular microRNA-494 (miR-494) loss and investigated the roles of miR-494 in melanoma progression. The exosomes from blood serum and cell culture conditioned media were separated by ultracentrifugation. A short hairpin RNA was used to silence rab27a for inhibiting exosome release. To address the functional role of exosomal miR-494, we assessed cell proliferation, migration, invasion capabilities, and cell apoptosis. Finally, subcutaneous xenograft and lung-metastasis models were constructed to determine the effect of exosomal miR-494 in vivo. Based on long noncoding RNA microarray analysis of melanocyte and melanoma-derived exosomes from the Gene Expression Omnibus database, we discovered that miR-494 was enriched in melanoma-derived exosomes. And miR-494 was increased in exosomes secreted from melanoma patients’ serum and A375 cells. Rab27a depletion reduced exosome secretion and rescued the abundance of cellular miR-494. Functional studies revealed that knockdown of rab27a and subsequent accumulation of miR-494 significantly suppressed the malignant phenotypes of melanoma cells via inducing cell apoptosis. Nude mice experiments confirmed that tumor growth and metastasis were suppressed by increasing miR-494 accumulation after rab27a depletion. In conclusion, blocking transferred exosome-shuttled miR-494 is a potential therapeutic option for melanoma.  相似文献   

13.
We aimed to investigate the role of exosomal miR-4443 in metastasis of breast cancer (BCa). In vitro wound-healing assay and transwell invasion assay were used to investigate effect of miR-4443 on BCa cells. Animal experiments were performed to confirm its effects in vivo. miR-4443 promotes the metastasis of BCa cells through downregulating tissue inhibitors of metalloproteinase 2 (TIMP2) and upregulating matrix metalloproteinases (MMPs). Highly invasive BCa cells have a higher expression of miR-4443 in both cells and exosomes. The exosomes derived from highly invasive BCa cells mainly gather in the primary tumor and liver. In vivo, overexpression of miR-4443 in noninvasive BCa cells induces liver metastasis, accompanied with downregulated TIMP2, and upregulated MMP-2 in both the primary tumor and liver. When we armed MCF-10A exosomes with miR-4443 inhibitors to treat mice bearing high-miR-4443 tumors, exosomes accumulated in the primary tumor, and liver following the upregulation of TIMP2 and downregulation of MMP2, and the metastasis was inhibited. Highly invasive BCa cells destroy natural barriers against metastasis by delivering exosomal miR-4443 to stromal cells of the primary tumor and impairing TIMP2, consequently activating MMP; circulating exosomal miR-4443 might promote BCa cells lodging in future metastatic sites through the similar mechanisms.  相似文献   

14.
Exosomal microRNA (miRNA) exerts potential roles in non-small-cell lung cancer (NSCLC). The current study elucidated the role of miR-30b-5p shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived exosomes in treating NSCLC. Bioinformatics analysis was performed with NSCLC-related miRNA microarray GSE169587 and mRNA data GSE74706 obtained for collection of the differentially expressed miRNAs and mRNAs. The relationship between miR-30b-5p and EZH2 was predicted and confirmed. Exosomes were isolated from BMSCs and identified. BMSCs-derived exosomes overexpressing miR-30b-5p were used to establish subcutaneous tumorigenesis models to study the effects of miR-30b-5p, EZH2 and PI3K/AKT signalling pathway on tumour growth. A total of 86 BMSC-exo-miRNAs were differentially expressed in NSCLC. Bioinfomatics analysis found that BMSC-exo-miR-30b-5p could regulate NSCLC progression by targeting EZH2, which was verified by in vitro cell experiments. Besides, the target genes of miR-30b-5p were enriched in PI3K/AKT signalling pathway. Animal experiments validated that BMSC-exo-miR-30b-5p promoted NSCLC cell apoptosis and prevented tumorigenesis in nude mice via EZH2/PI3K/AKT axis. Collectively, the inhibitory role of BMSC-derived exosomes-loaded miR-30b-5p in NSCLC was achieved through blocking the EZH2/PI3K/AKT axis.  相似文献   

15.
目的:探讨microRNA-155(miR-155)对骨肉瘤Saos2细胞增殖、侵袭和迁移的影响以及其作用机制。方法:利用实时荧光定量(qRT-PCR)实验检测miR-155在正常成骨细胞与骨肉瘤Saos2细胞中的表达水平,以及miR-155-mimic、miR-155-inhibitor的转染效率。采用CCK-8实验检测细胞的增殖能力,Transwell实验和划痕实验分别检测Saos2细胞的侵袭和迁移能力,Western blot检测细胞内的STAT3磷酸化水平以及SOCS1表达水平,双荧光素酶报告基因实验进行靶基因验证。结果:miR-155在骨肉瘤Saos2细胞中表达明显高于正常成骨细胞(P0.001)。在分别转染miR-155-mimic和miR-155-inhibitor后,Saos2细胞内miR-155表达水平明显上调和下降(P0.001)。过表达miR-155可促进Saos2细胞增殖、侵袭和迁移,降低SOCS1的蛋白水平,上调STAT3的磷酸化水平,差异均具有统计学意义。相反,降低miR-155水平可抑制Saos2细胞的增殖、侵袭和迁移能力,差异均具有统计学意义。结论:骨肉瘤Saos2细胞中高表达的miR-155可以通过抑制SOCS1表达来激活STAT3信号通路进而促进细胞的增殖、侵袭和迁移,因此,靶向抑制miR-155表达可以作为潜在治疗骨肉瘤的途径。  相似文献   

16.
This study aims to decipher the impact and downstream mechanisms of the bioinformatically identified circ_0038138 delivered by cancer-derived exosomes in gastric adenocarcinoma (GAC). Expression of circ_0038138 in clinical GAC tissues and exosomes (Exos) from clinical plasma samples (plasma-Exos) was predicted by bioinformatics analysis and validated by RT-qPCR. The binding affinity between circ_0038138, miR-198 and EZH2 was identified using luciferase activity, RIP, and RNA pull-down assays. GAC cells (AGS) were co-cultured with Exos isolated from GAC cell supernatant (GC9811-P). After co-culture, the behaviors of GAC cells including proliferation and glycolysis were assessed to identify the biological effect of exosomal circ_0038138. Also, in vivo effects of exosomal circ_0038138 on the tumorigenesis and lung metastasis of GAC cells were evaluated by developing nude mouse xenograft and metastatic models. circ_0038138 upregulation was detected in GAC tissues and plasma-Exos. Exos delivered circ_0038138 to GAC cells and potentiated the proliferative, migratory, invasive, and glycolytic potentials of GAC cells. Mechanistically, circ_0038138 competitively bound to miR-198, which in turn targeted EZH2 by binding to its 3′-UTR. Silencing of EZH2 promoted CXXC4 expression and inhibited Wnt/β-catenin pathway activation, thus repressing the malignancy and glycolysis of GAC cells. In vivo assay confirmed that exosomal circ_0038138 induced tumorigenesis and lung metastasis by regulating the miR-198/EZH2 axis. Collectively, our work suggests that the Exo-mediated transfer of circ_0038138 potentially facilitates the glycolysis, growth and metastasis of GAC cells via miR-198/EZH2 axis, which offers a potential prognostic marker and a therapeutic target for GAC.  相似文献   

17.
microRNAs (miRNAs) are of importance to chronic heart failure (CHF). However, the relevance of the exosomal miRNAs produced during CHF remains unknown. Our purpose here was to examine the relevance of exosomal microRNA-1246 (miR-1246) released from human umbilical cord mesenchymal stem cell (hucMSC) during CHF and the mechanism of action. Cardiac function, myocardial infarction area, apoptosis, and angiogenesis were all evaluated in a CHF rat model following treatment with hucMSC-derived exosomes (hucMSC-Exos). H9C2 and human umbilical vascular endothelial cells (HUVECs) were subjected to oxygen and glucose deprivation and exosome treatment to quantify the cell proliferation and apoptosis in H9C2 cells and the tube formation capacity of the HUVECs. A dual-luciferase activity reporter assay was conducted to validate the interaction between miR-1246 and serine protease 23 (PRSS23). HucMSCs treatment led to a reduction in H9C2 apoptosis and an increase in HUVEC angiogenesis, which were mitigated when hucMSCs were treated with a miR-1246 inhibitor. We also confirmed that PRSS23 is a putative target of miR-1246 and that miR-1246 attenuated hypoxia-induced myocardial tissue damage by targeting PRSS23 and inhibiting the activation of the Snail/alpha-smooth muscle actin signaling. Our findings suggest that exosomal miR-1246 from hucMSCs protects the heart from failure by targeting PRSS23.  相似文献   

18.
《Genomics》2022,114(3):110341
ObjectiveThis study intends to conquer the mystery of microRNA-16-5p/erythropoietin-producing hepatocellular A1/nuclear factor-κB signaling (miR-16-5p/EPHA1/NF-κB signaling) in breast cancer.MethodsExpression of miR-16-5p, EPHA1 and NF-κB signaling-related proteins were detected. Gene overexpression or silencing was used to examine the biological roles of bone marrow mesenchymal stem cells (BMSCs)-derived exo-miR-16-5p in breast cancer. The effect of exo-miR-16-5p on tumorigenesis of breast cancer was confirmed by the xenograft nude mouse model.ResultsLow miR-16-5p and high EPHA1 expression were examined in breast cancer. BMSCs-derived exosomes, up-regulated miR-16-5p or down-regulated EPHA1 restrained epithelial-mesenchymal transition (EMT) of breast cancer cells and tumor growth in nude mice. Down-regulated miR-16-5p or up-regulated EPHA1 activated NF-κB signaling. Knockdown of EPHA1 or inhibition of NF-κB signaling reversed the effects of down-regulated miR-16-5p on breast cancer cells.ConclusionBMSCs-derived exosomal miR-16-5p hinders breast cancer cells progression via EPHA1/NF-κB signaling axis.  相似文献   

19.
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Although it has been known that hepatic stellate cells (HSCs) play critical roles in the development and progression of HCC, the molecular mechanism underlying crosstalk between HSCs and cancer cells still remains unclear. Here, we investigated the interactions between HSCs and cancer cells through an indirect co-culture system. The expressions of cellular and exosomal miR-148a-3p were evaluated by quantitative real-time PCR. Cell counting kit-8 was used for evaluating cell growth in vitro. Cell migration and invasion ability were evaluated by wound-healing and Transwell assays. Western blot, quantitative real-time PCR and Luciferase reporter assay were performed to determine the target gene of miR-148a-3p. A xenograft liver cancer model was established to study the function of exosomal miR-148a-3p in vivo.We found that miR-148a-3p was downregulated in co-cultured HSCs and overexpression of miR-148a-3p in HSCs impaired the proliferation and invasiveness of HCC both in vitro and in vivo. Moreover, further study showed that the miR-148a-3p was also downexpressed in HSCs-derived exosomes, and increased HSCs-derived exosomal miR-148a-3p suppressed HCC tumorigenesis through ITGA5/PI3K/Akt pathway. In conclusion, our study demonstrated that exosome-depleted miR-148a-3p derived from activated HSCs accelerates HCC progression through ITGA5/PI3K/Akt axis.  相似文献   

20.
Emerging evidence suggests that microRNA plays a pivotal role in cell proliferation. Our previous research has certified that miR-146a attenuates osteoarthritis through the regulation of cartilage homeostasis. However, little information about the function of miR-146a in bone marrow-derived mesenchymal stem cells (BMSCs) proliferation and the underlying mechanism was available. Therefore, this study aims at investigating the role of miR-146a on the proliferation of BMSCs and the possible mechanisms involved. The function of miR-146a on BMSCs proliferation was studied through overexpression and knockdown of miR-146a or the indicated long noncoding RNAs (lncRNAs) in BMSCs and then the proliferation rate of the BMSCs were detected by Cell Counting Kit-8 assay, colony formation assay. Besides, flow cytometry was used to test the cell cycle state of BMSCs modified by overexpression or knockdown of miR-146a or lncRNA EPB41L4A-AS1 (EPB41L4A Antisense RNA 1) and small nucleolar RNA host gene 7 (SNHG7). The expression level of marker genes involved in modulating cell proliferation was evaluated by quantitative polymerase chain reaction and western blot analysis. We discovered that the knockdown of miR-146a significantly promoted BMSCs proliferation. Moreover, miR-146a could bind to and inhibit endogenous expression of EPB41L4A-AS1 and SNHG7. Further study demonstrated that overexpression of EPB41L4A-AS1 and SNHG7 significantly enhanced proliferation of BMSCs. For the first time, we certified that miR-146a suppressed BMSCs proliferation, but EPB41L4A-AS1 and SNHG7 promoted BMSCs proliferation in the present study. Mechanistically, miR-146a significantly inhibited BMSCs proliferation partly through miR-146a/EPB41L4A-AS1 SNHG7/cell proliferation signaling pathway axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号