首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Dysregulation of Hedgehog signaling can lead to several pathologies such as congenital defects and cancer. Here, we show that Hedgehog signaling is active in undifferentiated 3T3-L1 cells and decreases during adipocyte differentiation. Interestingly, this is paralleled by a decrease in Indian Hedgehog expression. We then tested if this down-regulation was sufficient to induce adipocyte differentiation. To this end, we demonstrate that the well-characterized Hedgehog inhibitor cyclopamine induced a decrease in Hedgehog signaling, similar to the one observed during adipocyte differentiation. However, cyclopamine did not induce nor potentiate adipocyte differentiation, as monitored by triglyceride staining and by the expression of several adipocyte markers: aP2, adipsin, C/EBPalpha, and Pref-1. Moreover, cyclopamine cannot substitute for other components of the differentiation medium: insulin, dexamethasone or IBMX. These results indicate that although Hedgehog signaling decreases during adipocyte differentiation, this down-regulation is not sufficient to trigger adipocyte differentiation. This suggests that Hedgehog signaling is an inadequate pharmacological target for patient suffering from syndromes associated with a decrease in fat mass, such as the ones observed in lipodystrophies.  相似文献   

4.
5.
6.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment.  相似文献   

7.
目的探讨妊娠中期的七氟醚暴露对神经干细胞凋亡过程的影响和作用机制。 方法将孕中期大鼠随机分为3组,每组48只孕鼠:对照组,低浓度七氟醚组,高浓度七氟醚组。在妊娠第14天,以2﹪或3.5﹪七氟醚麻醉怀孕大鼠2?h。通过免疫荧光检查神经干细胞凋亡,收集麻醉后6、24和48?h以及出生后第0天(P?0),第14天(P?14)和第28天(P?28)的脑组织进行Nestin-TUNEL免疫荧光双标染色以及Nestin、血管内皮生长因子(VEGF)和磷酸肌醇3-激酶(PI3K)AKT通路相关蛋白的免疫印迹检测。采用单因素方差分析和Bonferroni事后检验进行统计学分析。 结果麻醉后6、24和48?h以及P?0,P?14和P?28,脑组织中Nestin和TUNEL阳性细胞的百分比增加[6?h:对照组0.91±0.07,低浓度组1.01±0.08,高浓度组2.62±0.21(F?=?399,P?相似文献   

8.
Recent studies have indicated that promoting ferroptosis is a promising approach to attenuate drug resistance of cancer cells. Hence, this study aimed to induce ferroptosis in osteosarcoma cells, thereby increasing the sensitivity to cisplatin. Osteosarcoma cells MG63 and Saos‐2 were incubated with increasing doses of cisplatin to generate cisplatin‐resistant strains, MG63/DDP and Saos‐2/DDP. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate cell proliferation and cell death, respectively. Malondialdehyde (MDA), reactive oxygen species (ROS), and lipid oxidation in cells were measured to evaluate the degree of cell ferroptosis. MG63/DDP and Saos‐2/DDP cells showed increased viability and decreased death rate compared with MG63 and Saos‐2 cells, respectively, upon cisplatin treatment. Western blotting analysis indicated that protein levels of p‐STAT3 (Ser727), nuclear factor erythroid 2‐related factor 2 (Nrf2), and glutathione peroxidase 4 (GPx4) in drug‐resistant strains increased significantly in response to cisplatin. Co‐treatment with cisplatin and agonists of ferroptosis, Erastin, and RSL3, remarkably increased MDA, ROS, lipid oxidation, and sensitivity to cisplatin, in MG63/DDP and Saos‐2/DDP cells. Similar results were observed by co‐treatment of cells with cisplatin and a STAT3 inhibitor. The reduction of protein levels of p‐STAT3 (Ser727), Nrf2, and GPx4 in MG63/DDP and Saos‐2/DDP cells resulted in increased ferroptosis and sensitivity to cisplatin. These results indicate that cisplatin‐resistant osteosarcoma cells inhibited ferroptosis after exposure to low doses of cisplatin. However, ferroptosis agonists and STAT3 inhibitor reactivated ferroptosis in the cells and consequently increased sensitivity to cisplatin. This study demonstrates a new approach to attenuate resistance of osteosarcoma to cisplatin in vitro .  相似文献   

9.
Malignant gliomas are aggressive primary neoplasms that originate in the glial cells of the brain or the spine with notable resistance to standard treatment options. We carried out the study with the aim to shed light on the sensitization of resveratrol to temozolomide (TMZ) against glioma through the Wnt signaling pathway. Initially, glioma cell lines with strong resistance to TMZ were selected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Then, the glioma cells were subjected to resveratrol, TMZ, Wnt signaling pathway inhibitors, and activators. Cell survival rate and inhibitory concentration at half maximum value were detected by MTT, apoptosis by flow cytometry, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining, in vitro proliferation by hanging drop method and β-catenin translocation into nuclei by TOP/FOP-FLASH assay. The expressions of the Wnt signaling pathway-related and apoptosis-related factors were determined by western blot analysis. Nude mice with glioma xenograft were established to detect tumorigenic ability. Glioma cell lines T98G and U138 which were highly resistant to TMZ were selected for subsequent experiments. Resveratrol increased the efficacy of TMZ by restraining cell proliferation, tumor growth, and promoting cell apoptosis in glioma cells. Resveratrol inhibited Wnt2 and β-catenin expressions yet elevated GSK-3β expression. Moreover, the Wnt signaling pathway participates in the sensitivity enhancing of resveratrol to TMZ via regulating O 6-methylguanine-DNA methyltransferase (MGMT) expression. Resveratrol sensitized TMZ-induced glioma cell apoptosis by repressing the activation of the Wnt signaling pathway and downregulating MGMT expression, which may confer new thoughts to the chemotherapy of glioma.  相似文献   

10.
The glucose-regulated endoplasmic reticulum chaperone protein 94 (GRP94) is required for many biological processes, such as secretion of immune factors and mesoderm induction. Here, we demonstrated that GRP94 promotes muscle differentiation in vitro and in vivo. Moreover, GRP94 inhibited the PI3K/AKT/mTOR signaling pathway. Using both in vitro and in vivo approaches, in myoblasts, we found that this inhibition resulted in reduced proliferation and increased differentiation. To further investigate the mechanism of GRP94-induced muscle differentiation, we used co-immunoprecipitation and proximity ligation assays and found that GRP94 interacted with PI3K-interacting protein 1 (Pik3ip1). The latter protein promoted muscle differentiation by inhibiting the PI3K/AKT/mTOR pathway. Furthermore, GRP94 was found to regulate Pik3ip1 expression. Finally, when Pik3ip1 expression was inhibited, GRP94-induced promotion of muscle differentiation was diminished. Taken together, our data demonstrated that GRP94 promoted muscle differentiation, mediated by Pik3ip1-dependent inhibition of the PI3K/AKT/mTOR signaling pathway.  相似文献   

11.
We have previously isolated dieckol, a nutrient polyphenol compound, from the brown alga, Ecklonia cava (Lee et al., 2010a). Dieckol shows both antitumor and antioxidant activity and thus is of special interest for the development of chemopreventive and chemotherapeutic agents against cancer. However, the mechanism by which dieckol exerts its antitumor activity is poorly understood. Here, we show that dieckol, derived from E. cava, inhibits migration and invasion of HT1080 cells by scavenging intracellular reactive oxygen species (ROS). H2O2 or integrin signal-mediated ROS generation increases migration and invasion of HT1080 cells, which correlates with Rac1 activation and increased expression and phosphorylation of focal adhesion kinase (FAK). Rac1 activation is required for ROS generation. Depletion of FAK by siRNA suppresses Rac1-ROS-induced cell migration and invasion. Dieckol treatment attenuated intracellular ROS levels and activation of Rac1 as well as expression and phosphorylation of FAK. Dieckol treatment also decreases complex formation of FAK-Src-p130Cas and expression of MMP2, 9, and 13. These results suggest that the Rac1-ROS-linked cascade enhances migration and invasion of HT1080 cells by inducing expression of MMPs through activation of the FAK signaling pathway, whereas dieckol downregulates FAK signaling through scavenging intracellular ROS. This finding provides new insights into the mechanisms by which dieckol is able to suppress human cancer progresssion and metastasis. Therefore, we suggest that dieckol is a potential therapeutic agent for cancer treatment.  相似文献   

12.
Here, we used lumiflavin, an inhibitor of riboflavin, as a new potential therapeutic chemosensitizer to ovarian cancer stem‐like cells (CSCs). This study demonstrates that the enrichment of riboflavin in CSCs is an important cause of its resistance to chemotherapy. Lumiflavin can effectively reduce the riboflavin enrichment in CSCs and sensitize the effect of cisplatin Diamminedichloroplatinum (DDP) on CSCs. In this study, CSCs of human ovarian cancer cell lines HO8910 were separated using a magnetic bead (CD133+). We also show the overexpression of the mRNA and protein of riboflavin transporter 2 and the high content of riboflavin in CSCs compared to non‐CSCs (NON‐CSCs). Moreover, CSCs were less sensitive to DDP than NON‐CSCs, whereas, the synergistic effect of lumiflavin and DDP on CSCs was more sensitive than NON‐CSCs. Further research showed that lumiflavin had synergistic effects with DDP on CSCs in increasing mitochondrial function damage and apoptosis rates and decreasing clonic function. In addition, we found that the combination of DDP and lumiflavin therapy in vivo has a synergistic cytotoxic effect on an ovarian cancer nude mice model by enhancing the DNA‐damage response and increasing the apoptotic protein expression. Notably, the effect of lumiflavin is associated with reduced riboflavin concentration, and riboflavin could reverse the effect of DDP in vitro and in vivo. Accordingly, we conclude that lumiflavin interfered with the riboflavin metabolic pathways, resulting in a significant increase in tumour sensitivity to DDP therapy. Our study suggests that lumiflavin may be a novel treatment alternative for ovarian cancer and its recurrence.  相似文献   

13.
Retinoblastoma (RB) represents an aggressive malignancy in the eye during the period of infancy and childhood. We delineated the ability of microRNA-186 (miR-186) to influence viability, invasion, migration, angiogenesis, and apoptosis of RB via the Hedgehog signaling pathway by targeting AAA domain-containing protein 2 (ATAD2). The microarray-based analysis was adopted to identify differentially expressed genes (DEGs) related to RB. Subsequently, RB cells were treated with miR-186 mimic, miR-186 inhibitor, or si-ATAD2. The expression of miR-186, ATAD2, Hedgehog signaling pathway-related genes were evaluated, and the target relationship between miR-186 and ATAD2 was verified. Finally, cell proliferation, invasion, migration, apoptosis, and angiogenesis were assessed. ATAD2 was identified as a DEG and modulated by miR-186. Moreover, we revealed that ATAD2 was highly expressed, whereas miR-186 was lowly expressed, and the Hedgehog signaling pathway was activated in RB. Then, ATAD2 as a putative target of miR-186 was validated using a luciferase assay. miR-186 mimic or siRNA-ATAD2 in RB cells reduced cell viability, invasion, and migration coordinating with elevated apoptosis via impairing the Hedgehog signaling pathway, where repressed angiogenesis was observed. Overexpression of miR-186 attenuates RB via the inactivation of the Hedgehog signaling pathway by downregulating ATAD2.  相似文献   

14.
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose‐ and time‐dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol‐treated cells. Treatment of PC‐3 cells with an apoptosis‐inducing concentration of magnolol (60 µM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. Magnolol treatment (60 µM) also caused a decrease in Ser(136) phosphorylation of Bad (a proapoptotic protein), which is a downstream target of Akt. Protein interaction assay revealed that Bcl‐xL, an anti‐apoptotic protein, was associated with Bad during treatment with magnolol. We also observed that during treatment with magnolol, translocation of Bax to the mitochondrial membrane occurred and the translocation was accompanied by cytochrome c release, and cleavage of procaspase‐8, ‐9, ‐3, and poly(ADP‐ribose) polymerase (PARP). Similar results were observed in human colon cancer HCT116Bax+/? cell line, but not HCT116Bax?/? cell line. Interestingly, at similar concentrations (60 µM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)‐mediated signaling transduction pathways. J. Cell. Biochem. 106: 1113–1122, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
Acetaminophen (APAP) is a widely used over-the-counter analgesic and antipyretic. It can cause hepatotoxicity. Recent studies demonstrated that hydrogen sulfide (H2S) exhibits cell protection in several cell types. This study was designed to investigate whether H 2S ameliorated APAP-induced acute liver injury and to elucidate its mechanisms. In this study, we analyzed the detailed biological and molecular processes of APAP-induced hepatotoxicity using a bioinformatics analysis, which showed that apoptosis and the c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase pathway were confirmed to play critical roles in these processes. We further investigated the protective effects of H 2S on APAP-induced hepatotoxicity. In vivo, we observed that the exogenous supplement of H 2S ameliorated APAP-induced liver injury. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) systems were the endogenous pathway of H 2S. The expression of CBS/CSE was decreased in APAP-treated mice, while H 2S could significantly restore it. In addition, APAP-induced JNK activation was inhibited by H 2S in vivo. In vitro, H 2S abolished the active effects of APAP on caspase3, Bax, and Bcl-2 expressions as well as JNK phosphorylation in hepatocytes. It was found through flow cytometry that the amount of APAP-induced apoptotic hepatocytes was decreased in the presence of H 2S. In conclusion, our results suggested that H 2S attenuated APAP-induced apoptosis in hepatocytes through JNK/MAPK siganaling pathway.  相似文献   

17.
目的: 采用CRISPRi技术沉默人肺癌A549/DDP细胞MRP1基因表达,观察细胞对顺铂敏感性的变化。方法: 采用生物信息学软件分析MRP1启动子序列,设计合成3对sgRNA干扰片段,定向克隆到pSPgRNA载体中,构建靶向MRP1的干扰表达载体,分别与dCas9表达载体共转染A549/DDP细胞。实验共分为5组,分别为A549/DDP细胞组,Scrambled组,sgRNA-MRP1-1组,sgRNA-MRP1-2组和sgRNA-MRP1-3组,每组设置3个复孔,处理48 h后进行后续实验。通过qRT-PCR和Western blot检测MRP1 mRNA和蛋白表达水平,MTT法检测细胞对药物的敏感性,激光共聚焦显微镜下观察细胞的形态变化。结果: 成功构建了sgRNA-MRP1-1、sgRNA-MRP1-2和sgRNA-MRP1-3 3种干扰载体,分别与dCas9表达载体共转染A549/DDP细胞后,均能显著降低细胞MRP1基因表达(P<0.01),其中sgRNA-MRP1-2干扰效果最好,MRP1 mRNA水平降低了72%,蛋白水平降低了53%。将sgRNA-MRP1-2转染细胞后,细胞对顺铂的敏感性显著增加,IC50值由74.26±3.71降低至34.29±2.51,细胞形态由梭形变为椭圆形,染色质高度凝聚、边缘化,产生凋亡小体。结论: 成功构建3种靶向MRP1的干扰表达载体,均能有效沉默A549/DDP细胞中MRP1基因表达,可增强细胞对顺铂的敏感性。  相似文献   

18.
《Cancer epidemiology》2014,38(6):765-772
In breast cancer cells, overexpression of human epidermal growth factor receptor 2 (HER2) increases the translation of fatty acid synthase (FASN) by altering the activity of PI3K/Akt signaling pathways. Cancer chemotherapy causes major side effects and is not effective enough in slowing down the progression of the disease. Earlier studies showed a role for resveratrol in the inhibition of FASN, but the molecular mechanisms of resveratrol-induced inhibition are not known. In the present study, we examined the novel mechanism of resveratrol on Her2-overexpressed breast cancer cells.The effect of resveratrol on the growth of breast cancer cells was assessed as percent cell viability by cytotoxicity-based MTT assay and the induction of apoptosis was determined by cell-death detection ELISA and flow cytometric analysis of Annexin-V–PI binding. Western immunobloting was used to detect signaling events in human breast cancer (SKBR-3) cells.Data showed that resveratrol-mediated down-regulation of FASN and HER2 genes synergistically induced apoptotic death in SKBR-3 cells. This concurrently caused a prominent up-regulation of PEA3, leads to down-regulation of HER2 genes. Resveratrol also alleviated the PI3K/Akt/mTOR signaling by down-regulation of Akt phosphorylation and up-regulation of PTEN expression.These findings suggest that resveratrol alters the cell cycle progression and induce cell death via FASN inhibition in HER2 positive breast cancer.  相似文献   

19.
Iron overload is a common stress in the development of cells. Growing evidence has indicated that iron overload is associated with osteoporosis. Therefore, enhancing the understanding of iron overload would benefit the development of novel approaches to the treatment of osteoporosis. The purpose of the present study was to analyze the effect of iron overload on osteoblast cells, via the MC3T3-E1 cell line, and to explore its possible underlying molecular mechanisms. Ferric ammonium citrate (FAC) was utilized to simulate iron overload conditions in vitro. FAC-induced iron overload strongly suppressed proliferation of osteoblast cells and induced apoptosis. Moreover, iron overload strongly suppressed the expression of dual-specificity phosphatase 14 (DUSP14). Additionally, overexpression of DUSP14 protected osteoblast cells from the deleterious effects of iron overload, and this protective effect was mediated by FOXO3a. Additionally, matrine rescued the function of DUSP14 in osteoblast cells. Most importantly, our analysis demonstrated the essential role of the PI3K/AKT/FOXO3a/DUSP14 signaling pathway in the defense against iron overload in osteoblast cells. Overall, our results not only elucidate deleterious effects of iron overload, but also unveil its possible signaling pathway in osteoblast cells.  相似文献   

20.
Bisphenol S (BPS) is an environmental endocrine disruptor widely used in industrial production. BPS induces oxidative stress and exhibits male reproductive toxicity in mice, but the mechanisms by which BPS impairs steroid hormone synthesis are not fully understood. Nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 signaling is a key pathway in improving cellular antioxidant defense capacities. Therefore, this study explored the effects of exposure to BPS on testosterone synthesis in adult male mice and its mechanisms with regard to the Nrf2/HO-1 signaling pathway. Adult male C57BL/6 mice were orally exposed to BPS (2, 20, and 200 mg/kg BW) with sesame oil as a vehicle (0.1 ml/10 g BW) per day for 28 consecutive days. The results showed that compared with the control group, serum testosterone levels were substantially reduced in the 20 and 200 mg/kg BPS treatment groups, and testicular testosterone levels were reduced in all BPS treatment groups. These changes were accompanied by a prominent decrease in the expression levels of testosterone synthesis-related enzymes (STAR, CYP11A1, CYP17A1, HSD3B1, and HSD17B3) in the mouse testis. In addition, BPS induced oxidative stress in the testis by upregulating the messenger RNA and protein levels of Keap1 and downregulating the levels of Nrf2, HO-1, and downstream antioxidant enzymes (CAT, SOD1, and Gpx4). In summary, our results indicate that exposure of adult male mice to BPS can inhibit Nrf2/HO-1 signaling and antioxidant enzyme activity, which induces oxidative stress and thereby may impair testosterone synthesis in testicular tissues, leading to reproductive damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号