首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity and insulin resistance are associated with chronic, low grade inflammation. Moreover, regulation of energy metabolism and immunity are highly integrated. We hypothesized that energy-sensitive coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and AMP-activated protein kinase (AMPK) may modulate inflammatory gene expression in liver. Microarray analysis revealed that PGC-1α up-regulated expression of several cytokines and cytokine receptors, including interleukin 15 receptor α (IL15Rα) and, even more importantly, anti-inflammatory interleukin 1 receptor antagonist (IL1Rn). Overexpression of PGC-1α and induction of PGC-1α by fasting, physical exercise, glucagon, or cAMP was associated with increased IL1Rn mRNA and protein expression in hepatocytes. Knockdown of PGC-1α by siRNA down-regulated cAMP-induced expression of IL1Rn in mouse hepatocytes. Furthermore, knockdown of peroxisome proliferator-activated receptor α (PPARα) attenuated IL1Rn induction by PGC-1α. Overexpression of PGC-1α, at least partially through IL1Rn, suppressed interleukin 1β-induced expression of acute phase proteins, C-reactive protein, and haptoglobin. Fasting and exercise also induced IL15Rα expression, whereas glucagon and cAMP resulted in reduction in IL15Rα mRNA levels. Finally, AMPK activator metformin and adenoviral overexpression of AMPK up-regulated IL1Rn and down-regulated IL15Rα in primary hepatocytes. We conclude that PGC-1α and AMPK alter inflammatory gene expression in liver and thus integrate energy homeostasis and inflammation. Induction of IL1Rn by PGC-1α and AMPK may be involved in the beneficial effects of exercise and caloric restriction and putative anti-inflammatory effects of metformin.  相似文献   

2.
3.
4.
There are three isoforms of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) mRNA, which promotes mitochondrial biogenesis in skeletal muscles. Compared with PGC-1α-a mRNA, PGC-1α-b or PGC-1α-c mRNA is transcribed by a different exon 1 of the PGC-1α gene. In this study, effects of exercise intensity and 5-aminoimidazole-4-carboxamide-1β-d-ribofuranoside (AICAR) on isoform-specific expressions of PGC-1α were investigated. All isoforms were increased in proportion to exercise intensity of treadmill running (10-30 m/min for 30 min). Preinjection of β?-adrenergic receptor (AR) antagonist (ICI 118551) inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs, but not the increase in PGC-1α-a mRNA, in response to high-intensity exercise. Although high-intensity exercise activated α2-AMP-activated protein kinase (α2-AMPK) in skeletal muscles, inactivation of α2-AMPK activity did not affect high-intensity exercise-induced mRNA expression of all PGC-1α isoforms, suggesting that activation of α2-AMPK is not mandatory for an increase in PGC-1α mRNA by high-intensity exercise. A single injection in mice of AICAR, an AMPK activator, increased mRNAs of all PGC-1α isoforms. AICAR increased blood catecholamine concentrations, and preinjection of β?-AR antagonist inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs but not the increase in PGC-1α-a mRNA. Direct exposure of epitrochlearis muscle to AICAR increased PGC-1α-a but not the -b isoform. These data indicate that exercise-induced PGC-1α expression was dependent on the intensity of exercise. Exercise or AICAR injection increased PGC-1α-b and PGC-1α-c mRNAs via β?-AR activation, whereas high-intensity exercise increased PGC-1α-a expression by a multiple mechanism in which α2-AMPK is one of the signaling pathways.  相似文献   

5.
6.
Metformin inhibits ATP production in mitochondria and this may be involved in the anti-hyperglycemic effects of the drug. Sirtuin 3 (SIRT3) is a mitochondrial protein deacetylase that regulates the function of the electron transport chain and maintains basal ATP yield. We hypothesized that metformin treatment could diminish mitochondrial ATP production through downregulation of SIRT3 expression. Glucagon and cAMP induced SIRT3 mRNA in mouse primary hepatocytes. Metformin prevented SIRT3 induction by glucagon. Moreover, metformin downregulated constitutive expression of SIRT3 in primary hepatocytes and in the liver in vivo. Estrogen related receptor alpha (ERRα) mediates regulation of Sirt3 gene by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). ERRα mRNA expression was regulated in a similar manner as SIRT3 mRNA by glucagon, cAMP and metformin. However, a higher metformin concentration was required for downregulation of ERRα than SIRT3. ERRα siRNA attenuated PGC-1α mediated induction of SIRT3, but did not affect constitutive expression. Overexpression of the constitutively active form of AMP-activated protein kinase (AMPK) induced SIRT3 mRNA, indicating that the SIRT3 downregulation by metformin is not mediated by AMPK. Metformin reduced the hepatocyte ATP level. This effect was partially counteracted by SIRT3 overexpression. Furthermore, metformin decreased mitochondrial SIRT3 protein levels and this was associated with enhanced acetylation of several mitochondrial proteins. However, metformin increased mitochondrial mass in hepatocytes. Altogether, our results indicate that metformin attenuates mitochondrial expression of SIRT3 and suggest that this mechanism is involved in regulation of energy metabolism by metformin in the liver and may contribute to the therapeutic action of metformin.  相似文献   

7.
Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1α and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1α protein, but the other was not. Administration of SB203580 (SB), an inhibitor of p38 MAPK, suppressed the increase in PGC-1α expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1α and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.  相似文献   

8.
Transamination of branched-chain amino acids (BCAAs) catalyzed by the branched chain aminotransferase isoenzymes (BCATs) is believed to play an important role in nitrogen shuttling and excitatory neurotransmitter glutamate metabolism in brain. Recently, we have shown that the mitochondrial isoenzyme (BCATm) is the predominant form found in cultured astrocytes. In this study we used immunocytochemistry to examine the distribution of BCAT isoenzymes in cultured rat neurons and microglial cells. The cytoplasm of neurons displayed intense staining for the cytosolic isoenzyme (BCATc), whereas BCATm staining was not detectable in neurons. In contrast, microglial cells expressed BCATm in high concentration. BCATc appeared to be absent in this cell type. The second and committed step in the BCAA catabolic pathway is oxidative decarboxylation of the alpha-keto acid products of BCAT catalyzed by the branched-chain alpha-keto acid dehydrogenase (BCKD) enzyme complex. Because the presence of BCKD should provide an index of the ability of a cell to oxidize BCAA, we have also immunocytochemically localized BCKD in neuron and glial cell cultures from rat brain. Our results suggest ubiquitous expression of this BCKD enzyme complex in cultured brain cells. BCKD immunoreactivity was detected in neurons and in astroglial and microglial cells. Therefore, the expression of BCAT isoenzymes shows cell-specific localization, which is consistent with the operation of an intercellular nitrogen shuttle between neurons and astroglia. On the other hand, the ubiquitous expression of BCKD suggests that BCAA oxidation can probably take place in all types of brain cells and is most likely regulated by the activity state of BCKD rather than by its cell-specific localization.  相似文献   

9.
We have examined the localization of the first two enzymes in the branched-chain amino acid (BCAA) catabolic pathway: the branched-chain aminotransferase (BCAT) isozymes (mitochondrial BCATm and cytosolic BCATc) and the branched-chain alpha-keto acid dehydrogenase (BCKD) enzyme complex. Antibodies specific for BCATm or BCATc were used to immunolocalize the respective isozymes in cryosections of rat tissues. BCATm was expressed in secretory epithelia throughout the digestive tract, with the most intense expression in the stomach. BCATm was also strongly expressed in secretory cells of the exocrine pancreas, uterus, and testis, as well as in the transporting epithelium of convoluted tubules in kidney. In muscle, BCATm was located in myofibrils. Liver, as predicted, was not immunoreactive for BCATm. Unexpectedly, BCATc was localized in elements of the autonomic innervation of the digestive tract, as well as in axons in the sciatic nerve. The distributions of BCATc and BCATm did not overlap. BCATm-expressing cells also expressed the second enzyme of the BCAA catabolic pathway, BCKD. In selected monkey and human tissues examined by immunoblot and/or immunohistochemistry, BCATm and BCATc were distributed in patterns very similar to those found in the rat. The results show that BCATm is in a position to regulate BCAA availability as protein precursors and anabolic signals in secretory portions of the digestive and other organ systems. The unique expression of BCATc in neurons of the peripheral nervous system, without coexpression of BCKD, raises new questions about the physiological function of this BCAT isozyme.  相似文献   

10.
Although the branched-chain amino acids (BCAAs) are essential components of the mammalian diet, our current understanding of their metabolism in plants is still limited. It is however well known that the branched-chain amino acid transaminases (BCATs) play a crucial role in both the synthesis and degradation of the BCAAs leucine, isoleucine and valine. We previously characterized the BCAT gene family in tomato, revealing it to be highly diverse in subcellular localization, substrate preference, and expression. Here we performed further characterization of this family and provide evidence for the presence of another member, BCAT7. On mapping the chromosomal location of this enzyme, it was possible to define the exact chromosome map position of the gene. Although in Arabidopsis thaliana the AtBCAT7 has been considered a pseudo-gene, quantitative evaluation of the expression levels of this gene revealed that the expression profile of the BCAT7 in different tissues of tomato (Solanum lycopersicum cv. M82) plants is highly variable with the highest expression found in developed flowers. By using a C-terminal E-GFP gene fusion we demonstrate that the BCAT7 is extraplastidial and in combination with the kinetic characterization of BCAT7 our results suggest that it most likely operates in BCAA degradation in vivo and support our hypothesis of another functional member of BCAT family. The combined data presented are discussed within the context of BCAA metabolism and its functions in higher plants.  相似文献   

11.
12.
13.
摘要:为探讨马来酸罗格列酮对肺腺癌(A549)细胞中PGC-1a表达和活性的影响,以及抑制细胞增殖的机制,我们首先构建了pGL3-PGC-1a promoter重组质粒,转染人肺腺癌A549细胞,用双荧光素酶报告基因系统检测马来酸罗格列酮对PGC-1a启动子转录活性的影响;实时定量PCR检测胞内PGC-1a mRNA的表达;用Mitotracker green染色, 流式细胞仪检测线粒体质量;细胞计数检测马来酸罗格列酮对A549细胞体外增殖的影响。结果显示,马来酸罗格列酮能够抑制pGL3-PGC-1apromoter重组质粒的转录活性,降低A549细胞PGC-1amRNA水平的表达及线粒体质量,具有明显的剂量依赖性(P<0.05)。其抑制PGC-1a表达和活性的IC50(约为80 umol/L)与马来酸罗格列酮抑制A549细胞增殖的IC50(约为80 umol/L)相符。结论 马来酸罗格列酮能够抑制A549细胞中PGC-1a的表达与活性,进而降低细胞中的线粒体质量。这有可能是罗格列酮抑制A549细胞增殖的原因之一。  相似文献   

14.
AMP-activated protein kinase (AMPK), which was activated by an antihyperglycemic drug metformin, has been hypothesized to mediate metabolic adaptations. The purposes of the present study were 1) to confirm whether acute metformin administration induced AMPK phosphorylation and 2) to determine whether chronic metformin treatment increased the peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) protein expression, glycolytic and oxidative enzyme activities, and cytochrome c and glucose transporter-4 (GLUT4) protein expressions in the rat soleus and red and white gastrocnemius muscles. The single oral administration of metformin (300 mg/kg body wt) enhanced the AMPK phosphorylation at 5 and/or 6 h after treatment. In the chronic study, rats were fed either normal chow or chow containing 1% metformin for 14 days. Metformin treatment resulted in a mean daily metformin intake of 631 mg.kg body wt(-1).day(-1). Metformin increased the PGC-1alpha content in all three muscles. Metformin increased the hexokinase activity in the white gastrocnemius, the citrate synthase activity in all three muscles, and the beta-hydroxyacyl-CoA dehydrogenase activity in the soleus. The cytochrome c protein content in the soleus muscle also increased. The GLUT4 content was unchanged by metformin. These results suggest that metformin enhances the PGC-1alpha expression and mitochondrial biogenesis possibly at least in part via AMPK phosphorylation in the skeletal muscle. Metformin has thus been proposed to possibly ameliorate insulin resistance, at least partially, by means of such metabolic effects.  相似文献   

15.
Resistance exercise and amino acids are two major factors that influence muscle protein turnover. Here, we examined the effects of resistance exercise and branched-chain amino acids (BCAA), individually and in combination, on the expression of anabolic and catabolic genes in human skeletal muscle. Seven subjects performed two sessions of unilateral leg press exercise with randomized supplementation with BCAA or flavored water. Biopsies were collected from the vastus lateralis muscle of both the resting and exercising legs before and repeatedly after exercise to determine levels of mRNA, protein phosphorylation, and amino acid concentrations. Intake of BCAA reduced (P < 0.05) MAFbx mRNA by 30 and 50% in the resting and exercising legs, respectively. The level of MuRF-1 mRNA was elevated (P < 0.05) in the exercising leg two- and threefold under the placebo and BCAA conditions, respectively, whereas MuRF-1 total protein increased by 20% (P < 0.05) only in the placebo condition. Phosphorylation of p70(S6k) increased to a larger extent (~2-fold; P < 0.05) in the early recovery period with BCAA supplementation, whereas the expression of genes regulating mTOR activity was not influenced by BCAA. Muscle levels of phenylalanine and tyrosine were reduced (13-17%) throughout recovery (P < 0.05) in the placebo condition and to a greater extent (32-43%; P < 0.05) following BCAA supplementation in both resting and exercising muscle. In conclusion, BCAA ingestion reduced MAFbx mRNA and prevented the exercise-induced increase in MuRF-1 total protein in both resting and exercising leg. Further-more, resistance exercise differently influenced MAFbx and MuRF-1 mRNA expression, suggesting both common and divergent regulation of these two ubiquitin ligases.  相似文献   

16.
17.
18.
19.
20.
Insulin resistance is a risk factor for non-response to interferon/ribavirin therapy in patients with chronic hepatitis C. The aim of this study was to determine the role played by protein-tyrosine phosphatases (PTPs) in the absence of interferon-α (IFNα) response associated with insulin resistance. We induced insulin resistance by silencing IRS-2 or by treating HepG2 cells with tumor necrosis factor-α (TNFα) and analyzed insulin response by evaluating Akt phosphorylation and IFNα response by measuring Stat-1 tyrosine phosphorylation and 2',5'-oligoadenylate synthase and myxovirus resistance gene expression. The response to IFNα was also measured in insulin-resistant obese mice (high fat diet and ob/ob mice) untreated and treated with metformin. Silencing IRS-2 mRNA induces insulin resistance and inhibits IFNα response. Likewise, TNFα suppresses insulin and IFNα response. Treatment of cells with pervanadate and knocking down PTP-1B restores insulin and IFNα response. Both silencing IRS-2 and TNFα treatment increase PTP and PTP-1B activity. Metformin inhibits PTP and improves IFNα response in insulin-resistant cells. Insulin-resistant ob/ob mice have increased PTP-1B gene expression and activity in the liver and do not respond to IFNα administration. Treatment with metformin improves this response. In HepG2 cells, insulin resistance provokes IFNα resistance, which is associated with an increased PTP-1B activity in the liver. Inhibition of PTP-1B activity with pervanadate and metformin or knocking down PTP-1B reestablishes IFNα response. Likewise, metformin decreases PTP-1B activity and improves response to IFNα in insulin-resistant obese mice. The use of PTP-1B inhibitors may improve the response to IFNα/ribavirin therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号