首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Breast cancer is one of the major malignancies threatening women's health worldwide, and chemotherapy tolerance has become a severe limitation of clinical treatment. Recent findings have revealed that resveratrol, as a dietary agent with antitumour activity, could prevent cancer progression by regulating microRNAs (miRNAs). Additionally, dysregulated miRNAs have been found to contribute significantly to chemoresistance by an increasing number of studies. In this study, experiments were designed to study the functional role of resveratrol in MCF-7 cells (low-invasive breast cancer) in chemosensitivity to adriamycin and to determine the targeted miRNAs of resveratrol and their key target proteins linked to cell activity. We demonstrated that in resveratrol-induced chemosensitivity, cell cycle and apoptosis were arrested in adriamycin-resistant breast cancer cells after modulation of the critical suppresser, miR-122-5p. Further miRNA modulation with miR-122-5p mimics or miR-122-5p inhibitors indicated a major effect of miR-122-5p on the regulation of key antiapoptotic proteins (B-cell lymphoma 2 [Bcl-2]) and cyclin-dependent kinases (CDK2, CDK4, and CDK6) in drug-resistant breast cancer cells in response to resveratrol. In conclusion, our results indicate that resveratrol acts as a potential inducer to enhance the chemosensitivity of breast cancer and also suggest that miR-122-5p is involved in the pathway of cell-cycle arrest by targeting Bcl-2 and CDKs.  相似文献   

2.
目的探讨LncRNA AC130710通过miR-129-5P/WNT4轴对子宫内膜癌细胞(HEC-1A细胞)增殖、凋亡及上皮间质转化(EMT)的影响及机制研究。 方法通过实时荧光定量PCR检测LncRNA AC130710、miR-129-5P和WNT4在子宫内膜癌细胞(HEC-1A细胞)和人子宫内膜上皮细胞(HEEC)中的表达。细胞分别转染(1)siRNA NC、AC130710 siRNA、WNT4 siRNA;(2)inhibitor NC、miR-129-5P inhibitor;(3)pcDNA-3.1 (+)+mimics NC、pcDNA-AC130710+mimics NC、pcDNA-3.1 (+)+miR-129-5P mimics、pcDNA-AC130710+miR-129-5P mimics。MTT实验检测LncRNA AC130710、miR-129-5P和WNT4的表达对HEC-1A细胞增殖能力的影响;Western blot检测LncRNA AC130710、miR-129-5P和WNT4的表达对HEC-1A细胞凋亡相关蛋白B淋巴细胞瘤-2基因相关蛋白X (Bax)、剪切的半胱氨酰天冬氨酸特异性蛋白酶-3 (cleaved caspase-3)、cleaved caspase-9和B淋巴细胞瘤-2基因(Bcl-2)表达的影响;Western blot检测LncRNA AC130710、miR-129-5P和WNT4的表达对HEC-1A细胞EMT的影响。miRanda和双荧光素酶报告基因实验分析LncRNA AC130710和miR-129-5P之间的关系,TargetScan数据库分析miR-129-5P与WNT4的相关性,双荧光素酶报告基因检测miR-129-5P与WNT4的相互作用;RT-qPCR法检测LncRNA AC130710通过miR-129-5P对WNT4表达的影响。两组间比较采用独立样本t检验,多组间比较采用单因素方差分析,两两比较采用LSD-t检验。 结果与HEEC细胞比较,HEC-1A细胞中AC130710表达水平(1.86±0.21比0.85±0.06)、WNT4表达水平(1.88±0.26比1.08±0.12)升高;HEC-1A细胞中miR-129-5P表达水平(0.89±0.16比1.76±0.08)降低。与转染siRNA NC比较,转染AC130710 siRNA细胞内Bax、cleaved caspase-3、cleaved caspase-9、E-cadherin蛋白相对表达水平[(1.37±0.14比0.84±0.21),(1.08±0.16比0.37±0.07),(1.26±0.24比0.39±0.06),(1.87±0.17比1.32±0.26)]上升,Bcl-2、N-cadherin、Snail和Vimentin蛋白相对表达水平[(0.38±0.08比1.18±0.14),(0.36±0.04比0.85±0.24),(0.35±0.09比1.12±0.18),(0.42±0.10比1.26±0.27)]下降;与转染inhibitor NC比较,转染miR-129-5P inhibitor细胞的Bcl-2、N-cadherin、Snail和Vimentin蛋白相对表达水平[(0.98±0.07比0.65±0.08),(1.39±0.15比0.68±0.09),(0.95±0.08比0.42±0.06),(1.16±0.16比0.54±0.02)]上升,Bax、cleaved caspase-3、cleaved caspase-9、E-cadherin蛋白相对表达水平[(0.27±0.09比0.85±0.13),(0.48±0.05比1.16±0.28),(0.52±0.14比1.19±0.15),(0.43±0.09比1.08±0.26)]下降;与转染siRNA NC比较,转染WNT4 siRNA细胞的Bcl-2、N-cadherin、Snail和Vimentin蛋白相对表达水平[(0.23±0.08比0.84±0.12),(0.28±0.09比1.14±0.17),(0.42±0.23比1.06±0.15),(0.35±0.08比1.13±0.08)]降低,Bax、cleaved caspase-3、cleaved caspase-9、E-cadherin蛋白相对表达水平[(0.96±0.12比0.42±0.08),(1.13±0.25比0.45±0.06),(1.54±0.23比0.72±0.12),(1.87±0.24比1.26±0.18)]上升。 结论LncRNA AC130710可通过miR-129-5P/WNT4轴调控子宫内膜癌HEC-1A细胞增殖、凋亡及EMT。  相似文献   

3.
4.
miR-219-5p has been reported to act as either a tumor suppressor or a tumor promoter in different cancers by targeting different genes. In the present study, we demonstrated that miR-219-5p negatively regulated the expression of TBXT, a known epithelial–mesenchymal transition (EMT) inducer, by directly binding to TBXT 3′-untranslated region. As a result of its inhibition on TBXT expression, miR-219-5p suppressed EMT and cell migration and invasion in breast cancer cells. The re-introduction of TBXT in miR-219-5p overexpressing cells decreased the inhibitory effects of miR-219 on EMT and cell migration and invasion. Moreover, miR-219-5p decreased breast cancer stem cell (CSC) marker genes expression and reduced the mammosphere forming capability of cells. Overall, our study highlighted that TBXT is a novel target of miR-219-5p. By suppressing TBXT, miR-219-5p plays an important role in EMT and cell migration and invasion of breast cancer cells.  相似文献   

5.
先前的研究表明,miR-150-5p发挥抑癌基因的作用,调控肿瘤细胞的侵袭与转移。然而,关于其在乳腺癌细胞侵袭与转移中的机制尚不明确。本实验旨在研究miR-150-5p负向调控Rab1A在乳腺癌细胞上皮-间质转化(epithelial-mesenchymal transition,EMT)中的作用。双荧光素酶的结果显示,miR-150-5p可负向调控Rab1A。荧光定量PCR (qRT-PCR) 结果显示,miR-150-5p在乳腺癌细胞MCF-7及MDA-MB-231(MDA-231)中的表达水平明显低于正常乳腺上皮细胞MCF-10A; 在MDA-231中过表达miR-150-5p后,qRT-PCR结果显示,Rab1A mRNA的表达水平明显降低。Western印迹结果显示,过表达miR-150-5p后,miR-150-5p组细胞中的Rab1A、波形蛋白(vimentin)及N-钙黏着蛋白(N-cadherin)的表达水平相对于对照组(NC)细胞明显降低,而E-钙黏着蛋白(E-cadherin)的表达水平明显增加。Transwell侵袭和划痕实验显示,与miR-150-5p+Con组细胞相比,miR-150-5p+Rab1A组细胞的侵袭和迁移能力明显增加。qRT-PCR结果显示,miR-150-5p+Rab1A组细胞的Rab1A mRNA表达水平明显增加。Western印迹结果显示,miR-150-5p+Rab1A组细胞中的波形蛋白、N-钙黏着蛋白表达水平明显增加, 而E-钙黏着蛋白表达明显降低,过表达Rab1A后显著逆转了miR-150-5p对EMT的影响。综上所述,miR-150-5p可以通过负向调控Rab1A抑制EMT,进而抑制乳腺癌细胞的侵袭和迁移。  相似文献   

6.
7.
Human growth hormone (hGH) plays critical roles in pubertal mammary gland growth, development, and sexual maturation. Accumulated studies have reported that autocrine/paracrine hGH is an orthotopically expressed oncoprotein that promotes normal mammary epithelial cell oncogenic transformation. Autocrine/paracrine hGH has also been reported to promote mammary epithelial cell epithelial-mesenchymal transition (EMT) and invasion. However, the underlying mechanism remains largely obscure. MicroRNAs (miRNAs) are reported to be involved in regulation of multiple cellular functions of cancer. To determine whether autocrine/paracrine hGH promotes EMT and invasion through modulation of miRNA expression, we performed microarray profiling using MCF-7 cells stably expressing wild type or a translation-deficient hGH gene and identified miR-96-182-183 as an autocrine/paracrine hGH-regulated miRNA cluster. Forced expression of miR-96-182-183 conferred on epithelioid MCF-7 cells a mesenchymal phenotype and promoted invasive behavior in vitro and dissemination in vivo. Moreover, we observed that miR-96-182-183 promoted EMT and invasion by directly and simultaneously suppressing BRMS1L (breast cancer metastasis suppressor 1-like) gene expression. miR-96 and miR-182 also targeted GHR, providing a potential negative feedback loop in the hGH-GHR signaling pathway. We further demonstrated that autocrine/paracrine hGH stimulated miR-96-182-183 expression and facilitated EMT and invasion via STAT3 and STAT5 signaling. Consistent with elevated expression of autocrine/paracrine hGH in metastatic breast cancer tissue, miR-96-182-183 expression was also remarkably enhanced. Hence, we delineate the roles of the miRNA-96-182-183 cluster and elucidate a novel hGH-GHR-STAT3/STAT5-miR-96-182-183-BRMS1L-ZEB1/E47-EMT/invasion axis, which provides further understanding of the mechanism of autocrine/paracrine hGH-stimulated EMT and invasion in breast cancer.  相似文献   

8.
摘要 目的:探讨卵巢癌细胞UWB1.289中miR-155-5p对PARP抑制剂敏感性的影响及可能涉及的分子机制研究。方法:采用qRT-PCR技术检测miR-155-5p在有BRCA1/2突变和无BRCA1/2突变的卵巢癌组织及卵巢癌细胞中的表达情况。利用细胞转染、qRT-PCR以及Western Blot技术检测转染miR-155-5p模拟物和抑制剂的卵巢癌细胞UWB1.289中miR-155-5p的表达以及同源重组修复相关基因SIRT1、BRG1的表达。通过双荧光素酶报告基因实验验证miR-155-5p与SIRT1、BRG1之间的靶向性。运用CCK-8检测卵巢癌细胞UWB1.289中miR-155-5p对PARP抑制剂敏感性的影响。结果:与无BRCA1/2突变的卵巢癌组织及卵巢癌细胞相比,miR-155-5p在有BRCA1/2突变的卵巢癌组织及卵巢癌细胞中低表达。转染miR-155-5p模拟物可增加卵巢癌细胞UWB1.289中miR-155-5p的表达,同时降低同源重组修复相关基因SIRT1、BRG1的表达;转染miR-155-5p抑制剂可下调卵巢癌细胞UWB1.289中miR-155-5p的表达,同时增加SIRT1、BRG1的表达,进一步通过双荧光素酶报告基因实验证实miR-155-5p与SIRT1、BRG1存在特异性靶向结合序列。与对照组相比,干扰同源重组修复相关基因以及miR-155-5p过表达均可增强卵巢癌细胞UWB1.289对PARP抑制剂的敏感性。结论:miR-155-5p可能通过影响同源重组修复基因增强卵巢癌细胞UWB1.289对PARP抑制剂的敏感性。  相似文献   

9.
Osteosarcoma (OS) is the most common malignant bone tumor. In cancer cells, autophagy is related to epithelial-to-mesenchymal transition (EMT). Although microRNA (miR)-506-3p has been demonstrated to act as a tumor suppressor in OS, its role in regulating the EMT process and autophagy remains unknown. The results showed that miR-506-3p directly inhibited the expression of sphingosine kinase 1 (SPHK1) in 143B and SaOS-2 cells. The invasive capability of OS cells was reduced following miR-506-3p mimics transfection, and restored when SPHK1 was overexpressed simultaneously. Further, miR-506-3p mimics initiated mesenchymal-to-epithelial transition (MET) – E-cadherin expression was upregulated, whilst vimentin and fibronectin were downregulated. The basal autophagy flux (LC3II/I) was suppressed by miR-506-3p mimics. The alterations induced by miR-506-3p mimics were partly reversed by SPHK1 overexpression or treatment of rapamycin. Meanwhile, treatment of SPHK1-transfected cells with 3-methyladenine inhibited EMT. The data suggest that miR-506-3p initiates MET and suppresses autophagy in OS cells by targeting SPHK1.  相似文献   

10.
《Genomics》2022,114(3):110341
ObjectiveThis study intends to conquer the mystery of microRNA-16-5p/erythropoietin-producing hepatocellular A1/nuclear factor-κB signaling (miR-16-5p/EPHA1/NF-κB signaling) in breast cancer.MethodsExpression of miR-16-5p, EPHA1 and NF-κB signaling-related proteins were detected. Gene overexpression or silencing was used to examine the biological roles of bone marrow mesenchymal stem cells (BMSCs)-derived exo-miR-16-5p in breast cancer. The effect of exo-miR-16-5p on tumorigenesis of breast cancer was confirmed by the xenograft nude mouse model.ResultsLow miR-16-5p and high EPHA1 expression were examined in breast cancer. BMSCs-derived exosomes, up-regulated miR-16-5p or down-regulated EPHA1 restrained epithelial-mesenchymal transition (EMT) of breast cancer cells and tumor growth in nude mice. Down-regulated miR-16-5p or up-regulated EPHA1 activated NF-κB signaling. Knockdown of EPHA1 or inhibition of NF-κB signaling reversed the effects of down-regulated miR-16-5p on breast cancer cells.ConclusionBMSCs-derived exosomal miR-16-5p hinders breast cancer cells progression via EPHA1/NF-κB signaling axis.  相似文献   

11.
The cyclin-dependent kinase (CDK) inhibitor p27Kip1 plays a key role in growth and development of the mammary epithelium and in breast cancer. p27Kip1 levels are regulated through ubiquitin/proteasome-mediated proteolysis, promoted by CDK2 and the F box protein Skp2 at the G1/S transition, and independent of Skp2 in mid-G1. We investigated the respective roles of Skp2 and subcellular localization of p27Kip1 in down-regulation of p27Kip1 induced in MCF-7 cells by estrogens. 17beta-Estradiol treatment increased Skp2 expression in MCF-7 cells; however, this increase was prevented by G1 blockade mediated by p16Ink4a or the CDK inhibitor roscovitine, whereas down-regulation of p27Kip1 was maintained. Exogenous Skp2 prevented growth arrest of MCF-7 cells by antiestrogen, coinciding with decreased p27Kip1 expression. Under conditions of G1 blockade, p27Kip1 was stabilized by inhibition of CRM1-dependent nuclear export with leptomycin B or by mutation of p27Kip1 (Ser10 --> Ala; S10A) interfering with CRM1/p27Kip1 interaction. Antisense Skp2 oligonucleotides and a dominant-interfering Cul-1(1-452) mutant prevented down-regulation of p27Kip1S10A, whereas Skp2 overexpression elicited its destruction in mitogen-deprived cells. Active mediators of the extracellular signal-regulated kinase (ERK) pathway including Raf-1caax induced cytoplasmic localization of p27Kip1 in antiestrogen-treated cells and prevented accumulation of p27Kip1 in these cells independent of Skp2 expression and coinciding with ERK activation. Genetic or chemical blockade of the ERK pathway prevented down-regulation and cytoplasmic localization of p27Kip1 in response to estrogen. Our studies indicate that estrogens elicit down-regulation of p27Kip1 in MCF-7 cells through Skp2-dependent and -independent mechanisms that depend upon subcellular localization of p27Kip1 and require the participation of mediators of the Ras/Raf-1/ERK signaling pathway.  相似文献   

12.
化疗耐受是乳腺癌复发转移率居高不下、综合治疗效果难以提高的主要瓶颈。前期研究证实,miR-200c-3p在乳腺癌敏感细胞MCF-7中的表达量显著高于耐药细胞MCF-7/5Fu,提示miR-200c-3p可能参与乳腺癌化疗增敏,但是具体机制不详。生物信息学预测联合双荧光素酶报告基因实验证实,miR-200c-3p靶向调控FOSL1,且在多种肿瘤中miR-200c-3p与FOSL1表达负相关。实时荧光定量PCR技术和Western印迹技术证实,FOSL1在耐药细胞MCF-7/5Fu中的表达量显著高于亲本细胞MCF-7。在MCF-7细胞中,过表达FOSL1能够显著提高该细胞对5-Fu的化疗耐受;在MCF-7/5Fu中,使用siRNA技术沉默FOSL1,将提高该细胞对5-Fu的化疗敏感性。此外,MTT实验还发现,miR-200c-3p抑制剂能够显著上调MCF-7细胞对5-Fu的耐受,但是在此细胞中干扰FOSL1的表达,又可以增加其对5-Fu的化疗敏感性;miR-200c-3p mimics显著增加MCF-7/5Fu细胞的化疗敏感性,上调FOSL1表达后又可逆转miR-200c-3p mimics的化疗增敏作用。总之,miR-200-3p能够通过靶向FOSL1增加乳腺癌细胞对5-fluorouridine化疗敏感性。  相似文献   

13.
Aberrant expression of CXCR4 in human breast cancer correlates with metastasis to tissues secreting CXCL12. To understand the mechanism by which CXCR4 mediates breast cancer metastasis, MCF-7 breast carcinoma cells were transduced to express wild-type CXCR4 (CXCR4WT) or constitutively active CXCR4 (CXCR4ΔCTD) and analyzed in two-dimensional (2D) cultures, three-dimensional reconstituted basement membrane (3D rBM) cultures, and mice using intravital imaging. Two-dimensional cultures of MCF-7 CXCR4ΔCTD cells, but not CXCR4WT, exhibited an epithelial-to-mesenchymal transition (EMT) characterized by up-regulation of zinc finger E box–binding homeobox 1, loss of E-cadherin, up-regulation of cadherin 11, p120 isoform switching, activation of extracellular signal-regulated kinase 1/2, and matrix metalloproteinase-2. In contrast to the 2D environment, MCF-7 CXCR4WT cells cultured in 3D rBM exhibited an EMT phenotype, accompanied by expression of CXCR2, CXCR7, CXCL1, CXCL8, CCL2, interleukin-6, and granulocyte–macrophage colony stimulating factor. Dual inhibition of CXCR2 with CXCR4, or inhibition of either receptor with inhibitors of mitogen-activated protein kinase 1 or phosphatidylinositol 3-kinase, reversed the aggressive phenotype of MCF-7 CXCR4-expressing or MDA-MB-231 cells in 3D rBM. Intravital imaging of CXCR4-expressing MCF-7 cells revealed that tumor cells migrate toward blood vessels and metastasize to lymph nodes. Thus CXCR4 can drive EMT along with an up-regulation of chemokine receptors and cytokines important in cell migration, lymphatic invasion, and tumor metastasis.  相似文献   

14.
We have previously demonstrated that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of metastasis in oral cancer. Recently, small non coding RNAs, microRNAs (miRNAs) have been shown to be involved in the metastatic process of several types of cancers. However, the miRNAs that contribute to metastases induced by the SDF-1/CXCR4 system in oral cancer are largely unknown. In this study, we examined the metastasis-related miRNAs induced by the SDF-1/CXCR4 system using B88-SDF-1 oral cancer cells, which exhibit functional CXCR4 and distant metastatic potential in vivo. Through miRNA microarray analysis, we identified the upregulation of miR-518c-5p in B88-SDF-1 cells, and confirmed the induction by real-time PCR analysis. Although an LNA-based miR-518c-5p inhibitor did not affect cell growth of B88-SDF-1 cells, it did significantly inhibit the migration of the cells. Next, we transfected a miR-518c expression vector into parental B88 cells and CAL27 oral cancer cells and isolated stable transfectants, B88-518c and CAL27-518c cells, respectively. The anchorage-dependent and -independent growth of miR-518c transfectants was significantly enhanced compared with the growth of mock cells. Moreover, we detected the enhanced migration of these cells. The LNA-based miR-518c-5p inhibitor significantly impaired the enhanced cell growth and migration of miR-518c transfectants, indicating that these phenomena were mainly dependent on the expression of miR-518c-5p. Next, we examined the function of miR-518c-5p in vivo. miR-518c transfectants or mock transfectants were inoculated into the masseter muscle or the blood vessels of nude mice. Tumor volume, lymph nodes metastasis, and lung metastasis were significantly increased in the mice inoculated with the miR-518c transfectants. These results indicated that miR-518c-5p regulates the growth and metastasis of oral cancer as a downstream target of the SDF-1/CXCR4 system.  相似文献   

15.
Glioma is the most aggressive malignant tumor in the adult central nervous system. Abnormal long noncoding RNA (lncRNA) FOXD2-AS1 expression was associated with tumor development. However, the possible role of FOXD2-AS1 in the progression of glioma is not known. In the present study, we used in vitro and in vivo assays to investigate the effect of abnormal expression of FOXD2-AS1 on glioma progression and to explore the mechanisms. FOXD2-AS1 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of FOXD2-AS1 was correlated with poor prognosis of glioma. Downregulation of FOXD2-AS1 decreased cell proliferation, migration, invasion, stemness, and epithelial-mesenchymal transition (EMT) in glioma cells and inhibited tumor growth in transplanted tumor. We also revealed that FOXD2-AS1 was mainly located in cytoplasm and microRNA (miR)-185-5p both targeted FOXD2-AS1 and CCND2 messenger RNA (mRNA) 3′-untranslated region (3′-UTR). miR-185-5p was downregulated in glioma tissue, cells, and sphere subpopulation. Downregulation of miR-185-5p was closely correlated with poor prognosis of glioma patients. In addition, miR-185-5p mimics decreased cell proliferation, migration, invasion, stemness, and EMT in glioma cells. CCND2 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of CCND2 was closely correlated with poor prognosis of glioma patients. CCND2 knockdown decreased cell proliferation, migration, invasion, and EMT in glioma cells. In glioma tissues, CCND2 expression was negatively associated with miR-185-5p, but positively correlated with FOXD2-AS1. FOXD2-AS1 knockdown and miR-185-5p mimics decreased CCND2 expression. Inhibition of miR-185-5p suppressed FOXD2-AS1 knockdown-induced decrease of CCND2 expression. Overexpression of CCND2 suppressed FOXD2-AS1 knockdown-induced inhibition of glioma malignancy. Taken together, our findings highlight the FOXD2-AS1/miR-185-5p/CCND2 axis in the glioma development.  相似文献   

16.
Dysregulated long noncoding RNAs (lncRNAs) remains to be explored in tumorigenesis. LncRNA HOXC13 antisense RNA (HOXC13-AS) has been found as an oncogene in many cancers; however, the role of HOXC13-AS in breast cancer still elusive. In this study, the HOXC13-AS levels and its role in cell proliferation was first measured by real-time quantitative polymerase chain reaction, Cell Counting Kit-8 assay, and colony formation assay. It showed that HOXC13-AS was increased in breast cancer tissues compared with the adjacent normal tissues and upregulated HOXC13-AS promoted the growth of breast cancer cells. Then, we found that the miR-497-5p levels were downregulated in cancer tissues compared with the adjacent tissues and miR-497-5p suppressed breast cancer cell proliferation. Further study showed that HOXC13-AS could function as a “sponge” for miR-497-5p then suppress miR-497-5p expression. Moreover, we next identified that Phosphatase and Tensin homolog (PTEN) is the target of miR-497-5p. Overexpression of miR-497-5p by chemical mimics decreased the expression of PTEN, while downregulation of miR-497-5p by HOXC13-AS rescued the expression of PTEN. Finally, we showed that HOXC13-AS promoted the proliferation of breast cancer cells and tumor growth through miR-497-5p/PTEN axis in vitro and in vivo. Hence, we conclude that HOXC13-AS, which is significantly upregulated in breast cancers, promoted cell proliferation through the suppressed miR-497-5p and further upregulated PTEN.  相似文献   

17.
p38γ is a member of p38 MAPK family which contains four isoforms p38α, p38β, p38γ, and p38δ. p38γ MAPK has unique function and is less investigated. Recent studies revealed that p38γ MAPK may be involved in tumorigenesis and cancer aggressiveness. However, the underlying cellular/molecular mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) is a process that epithelial cancer cells transform to facilitate the loss of epithelial features and gain of mesenchymal phenotype. EMT promotes cancer cell progression and metastasis, and is involved in the regulation of cancer stem cells (CSCs) which have self-renewal capacity and are resistant to chemotherapy and target therapy. We showed that p38γ MAPK significantly increased EMT in breast cancer cells; over-expression of p38γ MAPK enhanced EMT while its down-regulation inhibited EMT. Meanwhile, p38γ MAPK augmented CSC population while knock down of p38γ MAPK decreased CSC ratio in breast cancer cells. MicroRNA-200b (miR-200b) was down-stream of p38γ MAPK and inhibited by p38γ MAPK; miR-200b mimics blocked p38γ MAPK-induced EMT while miR-200b inhibitors promoted EMT. p38γ MAPK regulated miR-200b through inhibiting GATA3. p38γ MAPK induced GATA3 ubiquitination, leading to its proteasome-dependent degradation. Suz12, a Polycomb group protein, was down-stream of miR-200b and involved in miR-200b regulation of EMT. Thus, our study established an important role of p38γ MAPK in EMT and identified a novel signaling pathway for p38γ MAPK–mediated tumor promotion.  相似文献   

18.
目的: 探讨miR-193a-5p靶向CDK14并调控卵巢癌细胞OVAC的增殖和上皮间充质转变(EMT)的作用。方法: 通过TargetScanHuman分析miR-193a-5p与CDK14的匹配情况,通过荧光素酶报告系统检测miR-193a-5p靶向CDK14情况;在miR-193a-5p mimics过表达或者miR-193a-5p inhibitor基因沉默miR-193a-5p的情况下,采用免疫印迹检测CDK14,EMT相关蛋白质E-cadherin、vimentin、fibronectin和N-cadherin的表达量,采用CCK-8检测卵巢癌细胞OVAC增殖情况, MMT检测卵巢癌细胞OVAC的细胞活力。结果: miR-193a-5p靶向CDK14的3‘UTR;过表达miR-193a-5后, CDK14的表达下降,EMT相关蛋白质E-cadherin的表达上升,vimentin、fibronectin和N-cadherin的表达下降,卵巢癌细胞OVAC的增殖和细胞活力均增加;同时,基因沉默miR-193a-5p后, CDK14的表达上升,EMT相关蛋白质E-cadherin的表达下降,vimentin、fibronectin和N-cadherin的表达量上升,卵巢癌细胞OVAC的增殖和细胞活力均减少。结论: miR-193a-5p通过靶向CDK14的3‘UTR降低卵巢癌细胞OVAC的增殖、细胞活力和EMT。  相似文献   

19.
C-X-C motif chemokine receptor 7 (CXCR7) is a newly discovered atypical chemokine receptor that binds to C-X-C motif chemokine ligand 12 (CXCL12) with higher affinity than CXCR4 and is associated with the metastasis of colorectal cancer (CRC). Cancer-associated fibroblasts (CAFs) have been known to promote tumor progression. However, whether CAFs are involved in CXCR7-mediated metastasis of CRC remains elusive. We found a significant positive correlation between CXCR7 expression and CAF activation markers in colonic tissues from clinical specimens and in villin-CXCR7 transgenic mice. RNA sequencing revealed a coordinated increase in the levels of miR-146a-5p and miR-155-5p in CXCR7-overexpressing CRC cells and their exosomes. Importantly, these CRC cell-derived miR-146a-5p and miR-155-5p could be uptaken by CAFs via exosomes and promote the activation of CAFs through JAK2–STAT3/NF-κB signaling by targeting suppressor of cytokine signaling 1 (SOCS1) and zinc finger and BTB domain containing 2 (ZBTB2). Reciprocally, activated CAFs further potently enhanced the invasive capacity of CRC cells. Mechanistically, CAFs transfected with miR-146a-5p and miR-155-5p exhibited a robust increase in the levels of inflammatory cytokines interleukin-6, tumor necrosis factor-α, transforming growth factor-β, and CXCL12, which trigger the epithelial–mesenchymal transition and pro-metastatic switch of CRC cells. More importantly, the activation of CAFs by miR-146a-5p and miR-155-5p facilitated tumor formation and lung metastasis of CRC in vivo using tumor xenograft models. Our work provides novel insights into CXCR7-mediated CRC metastasis from tumor–stroma interaction and serum exosomal miR-146a-5p and miR-155-5p could serve as potential biomarkers and therapeutic targets for inhibiting CRC metastasis.Subject terms: Cancer microenvironment, Colon cancer  相似文献   

20.
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and it has a prevalence rate of 15%–20% among all breast cancer cases in younger women. Still, the underlying molecular mechanisms of its pathogenesis are not entirely understood. In the previous study, we identified that microRNA (miR)-1250-5p is significantly down-expressed in TNBC cells. Thus, in the present study, we explore the functional anticancer role of miR‑1250‑5p in the transient mimic transfected TNBC cells. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to examine the effect of miR-1250-5p on cell viability of TNBC (MDA-MB-231 and MDA-MB-453) cells. The confocal microscopy, quantitative real-time polymerase chain reaction, and western blot analysis techniques were used to assess the effect of miR-1250-5p on cancer hallmarks in test cells. Induced miR‑1250-5p expression in MDA-MB-231 and MDA-MB-453 cells decreased cell viability in a time-dependent manner. Increased miR‑1250-5p expression levels significantly decreased cell cycle G1/S phase transition markers (Cyclin D1 and CDK4) at messenger RNA (mRNA) and protein levels in TNBC cells compared to scrambled sequence transfected cells. Transient transfection of TNBC cells with miR-1250-5p mimic increased apoptosis in TNBC cells by increasing the level of active caspase (Caspase 8 and Caspase 3) of the intrinsic pathway. Apoptosis-related morphological changes were also observed in the test cells. Further, the induced expression of miR-1250-5p significantly decreased epithelial-mesenchymal transition (EMT) by altering the mRNA and protein levels of E-cadherin and Vimentin. Moreover, results of confocal microscopy revealed increased reactive oxygen species generation, and decreased mitochondria membrane potential in miR-1250-5p mimic transient transfected TNBC cells. In conclusion, miR‑1250-5p acts as tumor suppressor in TNBC cells and its induction by therapeutics might be a novel strategy for the disease treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号