首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Although important factors governing the meiosis have been reported in the embryonic ovary, meiosis in postnatal testis remains poorly understood. Herein, we first report that SRY‐box 30 (Sox30) is an age‐related and essential regulator of meiosis in the postnatal testis. Sox30‐null mice exhibited uniquely impaired testis, presenting the abnormal arrest of germ‐cell differentiation and irregular Leydig cell proliferation. In aged Sox30‐null mice, the observed testicular impairments were more severe. Furthermore, the germ‐cell arrest occurred at the stage of meiotic zygotene spermatocytes, which is strongly associated with critical regulators of meiosis (such as Cyp26b1, Stra8 and Rec8) and sex differentiation (such as Rspo1, Foxl2, Sox9, Wnt4 and Ctnnb1). Mechanistically, Sox30 can activate Stra8 and Rec8, and inhibit Cyp26b1 and Ctnnb1 by direct binding to their promoters. A different Sox30 domain required for regulating the activity of these gene promoters, providing a “fail‐safe” mechanism for Sox30 to facilitate germ‐cell differentiation. Indeed, retinoic acid levels were reduced owing to increased degradation following the elevation of Cyp26b1 in Sox30‐null testes. Re‐expression of Sox30 in Sox30‐null mice successfully restored germ‐cell meiosis, differentiation and Leydig cell proliferation. Moreover, the restoration of actual fertility appeared to improve over time. Consistently, Rec8 and Stra8 were reactivated, and Cyp26b1 and Ctnnb1 were reinhibited in the restored testes. In summary, Sox30 is necessary, sufficient and age‐associated for germ‐cell meiosis and differentiation in testes by direct regulating critical regulators. This study advances our understanding of the regulation of germ‐cell meiosis and differentiation in the postnatal testis.  相似文献   

7.
Adult tissue maintenance is often dependent on resident stem cells; however, the phenotypic and functional heterogeneity existing within this self-renewing population is poorly understood. Here, we define distinct subsets of undifferentiated spermatogonia (spermatogonial progenitor cells; SPCs) by differential response to hyperactivation of mTORC1, a key growth-promoting pathway. We find that conditional deletion of the mTORC1 inhibitor Tsc2 throughout the SPC pool using Vasa-Cre promotes differentiation at the expense of self-renewal and leads to germline degeneration. Surprisingly, Tsc2 ablation within a subset of SPCs using Stra8-Cre did not compromise SPC function. SPC activity also appeared unaffected by Amh-Cre-mediated Tsc2 deletion within somatic cells of the niche. Importantly, we find that differentiation-prone SPCs have elevated mTORC1 activity when compared to SPCs with high self-renewal potential. Moreover, SPCs insensitive to Tsc2 deletion are preferentially associated with mTORC1-active committed progenitor fractions. We therefore delineate SPC subsets based on differential mTORC1 activity and correlated sensitivity to Tsc2 deletion. We propose that mTORC1 is a key regulator of SPC fate and defines phenotypically distinct SPC subpopulations with varying propensities for self-renewal and differentiation.  相似文献   

8.
Oryzias luzonensis is closely related to the medaka, O. latipes. The sex of both species is determined by an XX‐XY system. However, the testis determining gene (DMY/Dmrt1bY) found in O. latipes does not exist in O. luzonensis. Instead, a different gene is thought to act as a testis determining gene. In this study, we focused the gonadal sex differentiation process in O. luzonensis under different testis determining gene. First, we observed the gonadal development of O. luzonensis histologically. We then analyzed the expression of Sox9a2/Sox9b, Dmrt1, and Foxl2 during early development. Our results suggest that the sexual differentiation of germ cells in O. luzonensis is initiated later than in O. latipes. However, the timing of the sexual differentiation of the supporting cell linage is similar between the species. genesis 47:289–299, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Bone morphogenetic protein 4 (BMP4) is essential for the development of primordial follicles, although its underlying mechanism remains largely unknown. By using cultured ovaries, the effects of BMP4 and the potential signal transduction pathways were investigated. Ovaries from 3‐day‐old female mouse pups were maintained in organ culture in the absence (control) or presence of BMP4 (100 ng/ml). At different culture time, the effects of BMP4 on primordial follicle growth and survival were assayed by follicle count and TUNEL labeling. The expression of phospho‐SMAD1/5/8, Sohlh2, and c‐kit were measured by immunohistochemistry, RT‐PCR, and Western blotting. Immunohistochemistry was also performed to determine the expression pattern of BMP4, pSMAD1/5/8, Sohlh2, and c‐kit in vivo during ovarian development. The results showed treatments of ovaries with BMP4 resulted in a significant (P < 0.05) increase on the primordial‐to‐primary follicle transition. The oocytes of primordial follicles treated with BMP4 were also less likely to undergo apoptosis. BMP4 enhanced the phosphorylation of SMAD1/5/8 and up‐regulated the expression of Sohlh2 and c‐kit in primordial follicles. During ovarian development in vivo, Sohlh2, and c‐kit exhibited similar expression patterns to BMP4 and pSMAD1/5/8 in primordial follicles. The present studies suggest that BMP4/SMAD signaling pathway initiate primordial follicle growth and prevented oocyte apoptosis via up‐regulation of Sohlh2 and c‐kit. Mol. Reprod. Dev. 80: 70–78, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
11.
Sex‐determination mechanisms vary both within and among populations of common frogs, opening opportunities to investigate the molecular pathways and ultimate causes shaping their evolution. We investigated the association between sex‐chromosome differentiation (as assayed from microsatellites) and polymorphism at the candidate sex‐determining gene Dmrt1 in two Alpine populations. Both populations harboured a diversity of X‐linked and Y‐linked Dmrt1 haplotypes. Some males had fixed male‐specific alleles at all markers (“differentiated” Y chromosomes), others only at Dmrt1 (“proto‐” Y chromosomes), while still others were genetically indistinguishable from females (undifferentiated X chromosomes). Besides these XX males, we also found rare XY females. The several Dmrt1 Y haplotypes differed in the probability of association with a differentiated Y chromosome, which we interpret as a result of differences in the masculinizing effects of alleles at the sex‐determining locus. From our results, the polymorphism in sex‐chromosome differentiation and its association with Dmrt1, previously inferred from Swedish populations, are not just idiosyncratic features of peripheral populations, but also characterize highly diverged populations in the central range. This implies that an apparently unstable pattern has been maintained over long evolutionary times.  相似文献   

12.
13.
14.
Three‐dimensional (3D) culture provides a biomimicry of the naive microenvironment that can support cell proliferation, differentiation, and regeneration. Some growth factors, such as epidermal growth factor (EGF), facilitate normal meiosis during oocyte maturation in vivo. In this study, a scaffold‐based 3D coculture system using purified alginate was applied to induce oocyte differentiation from mouse embryonic stem cells (mESCs). mESCs were induced to differentiate into oocyte‐like cells using embryoid body protocol in the two‐dimensional or 3D microenvironment in vitro. To increase the efficiency of the oocyte‐like cell differentiation from mESCs, we employed a coculture system using ovarian granulosa cells in the presence or absence of epidermal growth factor (+EGF or ?EGF) for 14 days and then the cells were assessed for germ cell differentiation, meiotic progression, and oocyte maturation markers. The cultures exposed to EGF in the alginate‐based 3D microenvironment showed the highest level of premeiotic (Oct4 and Mvh), meiotic (Scp1, Scp3, Stra8, and Rec8), and oocyte maturation (Gdf9, Cx37, and Zp2) marker genes (p < .05) in comparison to other groups. According to the gene‐expression patterns, we can conclude that alginate‐based 3D coculture system provided a highly efficient protocol for oocyte‐like cell differentiation from mESCs. The data showed that this culture system along with EGF improved the rate of in vitro oocyte‐like cell differentiation.  相似文献   

15.
Germ cell sex is defined by factors derived from somatic cells. CYP26B1 is known to be a male sex-promoting factor that inactivates retinoic acid (RA) in somatic cells. In CYP26B1-null XY gonads, germ cells are exposed to a higher level of RA than in normal XY gonads and this activates Stra8 to induce meiosis while male-specific gene expression is suppressed. However, it is unknown whether meiotic entry by an elevated level of RA is responsible for the suppression of male-type gene expression. To address this question, we have generated Cyp26b1/Stra8 double knockout (dKO) embryos. We successfully suppressed the induction of meiosis in CYP26B1-null XY germ cells by removing the Stra8 gene. Concomitantly, we found that the male genetic program represented by the expression of NANOS2 and DNMT3L was totally rescued in about half of dKO germ cells, indicating that meiotic entry causes the suppression of male differentiation. However, half of the germ cells still failed to enter the appropriate male pathway in the dKO condition. Using microarray analyses together with immunohistochemistry, we found that KIT expression was accompanied by mitotic activation, but was canceled by inhibition of the RA signaling pathway. Taken together, we conclude that inhibition of RA is one of the essential factors to promote male germ cell differentiation, and that CYP26B1 suppresses two distinct genetic programs induced by RA: a Stra8-dependent meiotic pathway, and a Stra8-independent mitotic pathway.  相似文献   

16.
Both fibroblast growth factor 9 (Fgf9) and Kit Ligand (Kl) signal through tyrosine kinase receptors, yet they exert opposite effects on meiotic differentiation in postnatal spermatogonia, Fgf9 acting as a meiosis-inhibiting substance and Kl acting as a promoter of the differentiation process. To understand the molecular mechanisms that might underlie this difference, we tried to dissect the intracellular signaling elicited by these two growth factors. We found that both Fgf9 and Kl stimulate Erk1/2 activation in Kit+ (differentiating) spermatogonia, even though with different time courses, whereas Kl, but not Fgf9, elicits activation of the Pi3k-Akt pathway. Sustained Erk1/2 activity promoted by Fgf9 is required for induction of the autocrine Cripto-Nodal-Smad2/3 signaling loop in these cells. Nodal signaling, in turn, is essential to mediate Fgf9 suppression of the meiotic program, including inhibition of Stra8 and Scp3 expression and induction of the meiotic gatekeeper Nanos2. On the contrary, sustained activation of the Pi3k-Akt pathway is required for the induction of Stra8 expression elicited by Kl and retinoic acid. Moreover, we found that Kl treatment impairs Nodal mRNA expression and Fgf9-mediated Nanos2 induction, reinforcing the antagonistic effect of these two growth factors on the meiotic fate of male germ cells.In the mouse testis, competence to enter meiosis is acquired during the differentiative stages in which spermatogonia undergo Kit-dependent mitotic divisions, but not in Kit-negative spermatogonial stem cells. Retinoic acid (RA) stimulates Kit expression in spermatogonia and Kit Ligand (Kl) expression in Sertoli cells.1 Kl is essential to promote the mitotic expansion of Kit+ premeiotic germ cells.2 However, the concerted action of both RA and Kl can induce meiotic entry of in vitro cultured Kit+ spermatogonia.1 Indeed, both RA and Kl increase the expression of genes that are fundamental for the beginning of the meiotic process,1, 3 and in particular of Stimulated by Retinoic Acid Gene 8 (Stra8), which is essential for the switch from the mitotic cell cycle to the meiotic program.1 Selective inhibitors of Kit tyrosine-kinase activity block both RA- and Kl-induced meiotic entry, suggesting that the two factors converge on common, Kit-dependent, signaling pathways.1 RA- and Kl-induced meiotic entry is mediated, at least in part, by activation of the Pi3k-Akt pathway. RA promotes meiosis also by inhibiting the expression of the meiotic gatekeeper Nanos2, an RNA-binding protein that silences genes essential for spermatogonial differentiation and meiotic entry.4 Fibroblast growth factor 9 (Fgf9) secreted by Sertoli cells acts as a meiosis-inhibiting substance by increasing Nanos2 levels in premeiotic spermatogonia, thus opposing the RA/Kl/Kit axis.4 In the male fetal gonad, meiotic entry of male fetal gonocytes is inhibited by the action of Cyp26b1, which degrades RA of mesonephric origin.5, 6 Fgf9 contributes to prevent meiosis in the male fetal gonad by inducing Nanos2 expression in gonocytes.4, 7 Several recent works have shown that Nodal (a Tgfβ superfamily member) plays an important role in the inhibition of the meiotic program of fetal male germ cells.8, 9, 10 Moreover, it has been demonstrated that the Fgf9 inhibitory effect on meiotic entry of fetal gonocytes might be mediated, at least in part, by activation of Cripto-Nodal signaling.9In the present work, we show that the Fgf9 antimeiotic effect is mediated by activation of the Cripto-Nodal-Smad2/3 signaling in postnatal spermatogonia, and that this activation requires Fgf9-dependent stimulation of the Erk1/2 pathway. On the contrary, Kl promotes meiotic differentiation through the activation of the Pi3k-Akt pathway and inhibition of Nodal expression.  相似文献   

17.
The swamp eel is a teleost fish with a characteristic of natural sex reversal and an ideal model for vertebrate sexual development. However, underlying molecular mechanisms are poorly understood. We report the identification of five DM (doublesex and mab-3) domain genes in the swamp eel that include Dmrt2, Dmrt2b, Dmrt3, Dmrt4 and Dmrt5, which encode putative proteins of 527, 373, 471, 420 and 448 amino acids, respectively. Phylogenetic tree showed that these genes are clustered into corresponding branches of the DM genes in vertebrates. Southern blot analysis indicated that the Dmrt1–Dmrt3–Dmrt2 genes are tightly linked in a conserved gene cluster. Notably, these Dmrt genes are up-regulated during gonad transformation. Furthermore, mRNA in situ hybridisation showed that Dmrt2, Dmrt3, Dmrt4 and Dmrt5 are expressed in developing germ cells. These results are evidence that the DM genes are involved in sexual differentiation in the swamp eel.  相似文献   

18.
19.
Sex chromosomes in vertebrates range from highly heteromorphic (as in most birds and mammals) to strictly homomorphic (as in many fishes, amphibians, and nonavian reptiles). Reasons for these contrasted evolutionary trajectories remain unclear, but species such as common frogs with polymorphism in the extent of sex chromosome differentiation may potentially deliver important clues. By investigating 92 common frog populations from a wide range of elevations throughout Switzerland, we show that sex chromosome differentiation strongly correlates with alleles at the candidate sex-determining gene Dmrt1. Y-specific Dmrt1 haplotypes cluster into two main haplogroups, YA and YB, with a phylogeographic signal that parallels mtDNA haplotypes: YA populations, with mostly well-differentiated sex chromosomes, occur primarily south of the main alpine ridge that bisects Switzerland, whereas YB populations, with mostly undifferentiated (proto-)sex chromosomes, occur north of this ridge. Elevation has only a marginal effect, opposing previous suggestions of a major role for climate on sex chromosome differentiation. The Y-haplotype effect might result from differences in the penetrance of alleles at the sex-determining locus (such that sex reversal and ensuing X-Y recombination are more frequent in YB populations), and/or fixation of an inversion on YA (as supported by the empirical observation that YA haplotypes might not recombine in XYA females).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号