首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li XL  Li K  Li YY  Feng Y  Gong Q  Li YN  Li XJ  Chen CJ 《Cell stress & chaperones》2009,14(2):199-206
The expression of heat-shock protein 60 (also known as chaperonin 60, Cpn60) in experimental acute pancreatitis (AP) is considered to play an active role in the prevention of abnormal enzyme accumulation and activation in pancreatic acinar cells. However, there are controversial results in the literature regarding the relationship between the abnormality of Cpn60 expression and AP onset and development. The purpose of this study was to investigate the alternations of Cpn60 expression and the relationship between the abnormal expression of Cpn60 and AP progression in rat severe acute pancreatitis (SAP) models. In this report, we induced SAP in Sprague–Dawley (SD) rats by reverse injection of sodium deoxycholate into the pancreatic duct, and examined the dynamic changes of Cpn60 expression in pancreatic tissues from different time points and at different levels with techniques of real-time PCR, western blotting, and immunohistochemistry. At 1 h after SAP induction, the expression of Cpn60 mRNA in the AP pancreatic tissues was higher than those in the sham-operation group and normal control group, but decreased sharply as the time period was extended, and there was a significant difference between 1 h and 10 h after SAP induction (p < 0.05). In the AP process, Cpn60 protein expression showed transient elevation as well, and the increased protein expression occurred predominantly in affected, but not totally destroyed, pancreatic acinar cells. As AP progressed, the pancreatic tissues were seriously damaged, leading to a decreased overall Cpn60 protein expression. Our results show a complex pattern of Cpn60 expression in pancreatic tissues of SAP rats, and the causality between the damage of pancreatic tissues and the decrease of Cpn60 level needs to be investigated further. Xue-Li Li and Kun Li contributed equally to this work.  相似文献   

2.
The role of pancreatic acinar cells in initiating necro-inflammatory responses during the early onset of alcoholic acute pancreatitis (AP) has not been fully evaluated. We investigated the ability of acinar cells to generate pro- and anti-inflammatory mediators, including inflammasome-associated IL-18/caspase-1, and evaluated acinar cell necrosis in an animal model of AP and human samples. Rats were fed either an ethanol-containing or control diet for 14 weeks and killed 3 or 24 h after a single lipopolysaccharide (LPS) injection. Inflammasome components and necro-inflammation were evaluated in acinar cells by immunofluorescence (IF), histology, and biochemical approaches. Alcohol exposure enhanced acinar cell-specific production of TNFα, IL-6, MCP-1 and IL-10, as early as 3 h after LPS, whereas IL-18 and caspase-1 were evident 24 h later. Alcohol enhanced LPS-induced TNFα expression, whereas blockade of LPS signaling diminished TNFα production in vitro, indicating that the response of pancreatic acinar cells to LPS is similar to that of immune cells. Similar results were observed from acinar cells in samples from patients with acute/recurrent pancreatitis. Although morphologic examination of sub-clinical AP showed no visible signs of necrosis, early loss of pancreatic HMGB1 and increased systemic levels of HMGB1 and LDH were observed, indicating that this strong systemic inflammatory response is associated with little pancreatic necrosis. These results suggest that TLR-4-positive acinar cells respond to LPS by activating the inflammasome and producing pro- and anti-inflammatory mediators during the development of mild, sub-clinical AP, and that these effects are exacerbated by alcohol injury.  相似文献   

3.
4.
Shen J  Wan R  Hu G  Wang F  Shen J  Wang X 《Cytokine》2012,60(1):294-301
Thrombopoietin (TPO) plays an important role in injuries of different tissues. However, the role of TPO in acute pancreatitis (AP) is not yet known. The aim of the study was to determine the involvement of TPO in AP. Serum TPO was assayed in necrotizing pancreatitis induced by l-arginine in mice. Recombinant TPO and anti-TPO antibody were given to mice with necrotizing pancreatitis. Amylase, lipase, lactate dehydrogenase, myeloperoxidase activity and pancreatic water content were assayed in serum and tissue samples. Pancreas and lung tissue samples were also collected for histological evaluation. Immunohistochemistry of amylase α and PCNA were applied for the study of acinar regeneration and TUNEL assay for the detection of apoptosis in the pancreas. Increased levels of serum TPO were found in necrotizing pancreatitis. After TPO administration, more severe acinar necrosis was found and blockade of TPO reduced the acinar necrosis in this AP model. Acinar regeneration and apoptosis in the pancreas were affected by TPO and antibody treatment in necrotizing pancreatitis. The severity of pancreatitis-associated lung injury was worsened after TPO treatment, but attenuated after Anti-TPO antibody treatment. In conclusion, serum TPO is up-regulated in the necrotizing pancreatitis induced by l-arginine in mice and may be a risk factor for the pancreatic acinar necrosis in AP. As a pro-necrotic factor, blockade of TPO can attenuate the acinar necrosis in AP and may be a possible therapeutic intervention for AP.  相似文献   

5.
Acinar cells in pancreatitis die through apoptosis and necrosis, the roles of which are different. The severity of experimental pancreatitis correlates directly with the extent of necrosis and inversely, with apoptosis. Apoptosis is mediated by the release of cytochrome c into the cytosol followed by caspase activation, whereas necrosis is associated with the mitochondrial membrane potential (ΔΨm) loss leading to ATP depletion. Here, we investigate the role of Bcl-2 proteins in apoptosis and necrosis in pancreatitis. We found up-regulation of prosurvival Bcl-2 proteins in pancreas in various experimental models of acute pancreatitis, most pronounced for Bcl-xL. This up-regulation translated into increased levels of Bcl-xL and Bcl-2 in pancreatic mitochondria. Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss and cytochrome c release in isolated mitochondria. Corroborating the results on mitochondria, Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss, ATP depletion and necrosis in pancreatic acinar cells, both untreated and hyperstimulated with CCK-8 (in vitro pancreatitis model). Together Bcl-xL/Bcl-2 inhibitors and CCK induced more necrosis than either treatment alone. Bcl-xL/Bcl-2 inhibitors also stimulated cytochrome c release in acinar cells leading to caspase-3 activation and apoptosis. However, different from their effect on pronecrotic signals, the stimulation by Bcl-xL/Bcl-2 inhibitors of apoptotic responses was less in CCK-treated than control cells. Therefore, Bcl-xL/Bcl-2 inhibitors potentiated CCK-induced necrosis but not apoptosis. Correspondingly, transfection with Bcl-xL siRNA stimulated necrosis but not apoptosis in the in vitro pancreatitis model. Further, in animal models of pancreatitis Bcl-xL up-regulation inversely correlated with necrosis, but not apoptosis. Results indicate that Bcl-xL and Bcl-2 protect acinar cells from necrosis in pancreatitis by stabilizing mitochondria against death signals. We conclude that Bcl-xL/Bcl-2 inhibition would aggravate acute pancreatitis, whereas Bcl-xL/Bcl-2 up-regulation presents a strategy to prevent or attenuate necrosis in pancreatitis.  相似文献   

6.
We aimed to investigate the relationship between the synthesis of hydrogen sulfide (H2S) and the pancreatic acinar cell apoptosis in severe acute pancreatitis (SAP) rats, as well as analyse the potential apoptotic pathway involved in this process. Sixty rats had been equally divided into four groups: sham, SAP, SAP + sodium hydrosulfide (NaHS) and SAP + DL-propargylglycine (PAG). 24 h after SAP induction, all surviving animals of each group were sacrificed to collect blood and tissue samples for the following measurements: the level of serum H2S as well as the levels of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), H2S synthesizing activity, CSE mRNA and protein expression, maleic dialdehyde (MDA) and myeloperoxidase (MPO) activity, the expression of Bax, Bcl-2, caspase-3, -8 and -9, the release of cytochrome c and the activation of nuclear factor-kappa B (NF-κB), ERK1/2, JNK1/2 and p38 in pancreas. Furthermore, in situ detection of cell apoptosis was examined and the severity of pancreatic damage was analyzed by pathological grading and scoring. Results Significant differences in every index except IL-10 had been found between the SAP, NaHS and PAG groups (P < 0.05). Treatment with PAG obviously induced the pancreatic acinar cell apoptosis as well as improved all the pathological changes and inflammatory parameters. In contrast, administration of NaHS significantly attenuated apoptosis in the pancreas and aggravated the severity of pancreatic damage. Moreover, the expressions of caspase-3, -8, -9 and the release of cytochrome c were all increased in the apoptotic cells, and the activity of NF-κB as well as the phosphorylation of ERK1/2, JNK1/2 and p38 decreased accompanying with the reduction of the serum H2S level. H2S plays a pivotal role in the regulation of pancreatic acinar cell apoptosis in SAP rats. The present results showed that inhibition of H2S synthesis provided protection for SAP rats via inducing acinar cell apoptosis. This process acted through both extrinsic and intrinsic apoptotic pathways, and may be regulated by reducing the activity of NF-κB.  相似文献   

7.
To investigate the apoptosis and inflammatory response of microRNA-27a-5p (miR-27a-5p) in pancreatic acinar cells of acute pancreatitis (AP) and its related mechanisms. Rat pancreatic acinar cell line AR42J was treated with caerulein (10nmol/L) to construct an acute pancreatitis cell model. Quantitative real-time polymerase chain reaction was performed to measure the expression of miR-27a-5p; The miR-27a-5p mimic was transfected into cell, and the apoptosis rate of the cells was detected by flow cytometry; The levels of TNF-α, IL-1, and IL-6 in the culture supernatant were determined by enzyme-linked immunosorbent assay; TargetScans database predicted and dual luciferase reporter gene assay verified the relationship between miR-27a-5p and the phosphatase and tensin homolog deleted on chromosome 10 (PTEN); The recovery experiment explored the apoptosis and the effects of inflammatory responses. The expression of miR-27a-5p decreased gradually (P < 0.05) and the expression of PTEN increased gradually (P < 0.05) with the prolongation of acting time. Upregulation of miR-27a-5p significantly promoted cell apoptosis (P < 0.05) and inhibited inflammatory response (P < 0.05); The TargetScans database predicted that the 3'UTR of PTEN contains a base complementary to the miR-27a-5p seed region. Cotransfection of wild-type vector (PTEN-WT) with miR-27a-5p mimic or miR-27a-5p inhibitor significantly affected the relative activity of luciferase (P < 0.05), and no significant impact was observed in mutant PTEN-MUT. Compared with miR-27a-5p + pcDNA group, transfection of miR-27a-5p mimic and pcDNA-PTEN significantly increased the expression of PTEN (P < 0.05), decreased the apoptotic rate (P < 0.05), and increased the inflammatory response (P < 0.05). miR-27a-5p induced apoptosis and inhibited the inflammatory response of pancreatic acinar cells in AP by targeting PTEN.  相似文献   

8.
Oxygen free radicals (OFR) are produced in the course of acute pancreatitis (AP). In addition to injurious oxidative effects, they are also involved in the regulation of cell growth. The aim of the present study was to examine the relationship between the effectiveness of N-acetyl-l-cysteine (NAC) to prevent the generation of OFR and the changes in the cell-cycle pattern of acinar cells in the course of AP induced in rats by pancreatic duct obstruction (PDO). NAC (50 mg/kg) was administered 1 h before and 1 h after PDO. Flow-cytometric measurement of OFR generation in acinar cells was carried out using dihydrorhodamine as fluorescent dye. Plasma amylase activity, pancreatic glutathione (GSH) content and TNF-alpha plasma levels were also measured. The distribution of acinar cells throughout the different cell-cycle phases was analysed at different AP stages by flow cytometry using propidium iodide staining. NAC administration reduced the depletion of pancreatic GSH content and prevented OFR generation in acinar cells of rats with PDO-induced acute pancreatitis. As a result, AP became less severe as reflected by the significant improvement of hyper-amylasaemia and maintenance of plasma TNF-alpha levels at values not significantly different from controls were found. NAC administration inhibited progression of cell-cycle phases, maintaining acinar cells in quiescent state at early PDO times. The protection from oxidative damage by NAC treatment during early AP, allows the pancreatic cell to enter S-phase actively at later stages, thereby allowing acinar cells to proliferate and preventing the pancreatic atrophy provoked by PDO-induced AP. The results provide evidence that OFR play a critical role in the progression of acinar cell-cycle phases. Prevention of OFR generation of acinar cells in rats with PDO-induced AP through NAC treatment, not only protects pancreas from oxidative damage but also promotes beneficial changes in the cell cycle progression which reduce the risk of pancreatic atrophy.  相似文献   

9.
Hereditary pancreatitis (HP) is an autosomal dominant disease that displays the features of both acute and chronic pancreatitis. Mutations in human cationic trypsinogen (PRSS1) are associated with HP and have provided some insight into the pathogenesis of pancreatitis, but mechanisms responsible for the initiation of pancreatitis have not been elucidated and the role of apoptosis and necrosis has been much debated. However, it has been generally accepted that trypsinogen, prematurely activated within the pancreatic acinar cell, has a major role in the initiation process. Functional studies of HP have been limited by the absence of an experimental system that authentically mimics disease development. We therefore developed a novel transgenic murine model system using wild-type (WT) human PRSS1 or two HP-associated mutants (R122H and N29I) to determine whether expression of human cationic trypsinogen in murine acinar cells promotes pancreatitis. The rat elastase promoter was used to target transgene expression to pancreatic acinar cells in three transgenic strains that were generated: Tg(Ela-PRSS1)NV, Tg(Ela-PRSS1*R122H)NV and Tg(Ela-PRSS1*N29I)NV. Mice were analysed histologically, immunohistochemically and biochemically. We found that transgene expression is restricted to pancreatic acinar cells and transgenic PRSS1 proteins are targeted to the pancreatic secretory pathway. Animals from all transgenic strains developed pancreatitis characterised by acinar cell vacuolisation, inflammatory infiltrates and fibrosis. Transgenic animals also developed more severe pancreatitis upon treatment with low-dose cerulein than controls, displaying significantly higher scores for oedema, inflammation and overall histopathology. Expression of PRSS1, WT or mutant, in acinar cells increased apoptosis in pancreatic tissues and isolated acinar cells. Moreover, studies of isolated acinar cells demonstrated that transgene expression promotes apoptosis rather than necrosis. We therefore conclude that expression of WT or mutant human PRSS1 in murine acinar cells induces apoptosis and is sufficient to promote spontaneous pancreatitis, which is enhanced in response to cellular insult.  相似文献   

10.
Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.  相似文献   

11.
12.
Apoptosis and necrosis are critical parameters of pancreatitis, the mechanisms of which remain unknown. Many characteristics of pancreatitis can be studied in vitro in pancreatic acini treated with high doses of cholecystokinin (CCK). We show here that CCK stimulates apoptosis and death signaling pathways in rat pancreatic acinar cells, including caspase activation, cytochrome c release, and mitochondrial depolarization. The mitochondrial dysfunction is mediated by upstream caspases (possibly caspase-8) and, in turn, leads to activation of caspase-3. CCK causes mitochondrial alterations through both permeability transition pore-dependent (cytochrome c release) and permeability transition pore-independent (mitochondrial depolarization) mechanisms. Caspase activation and mitochondrial alterations also occur in untreated pancreatic acinar cells; however, the underlying mechanisms are different. In particular, caspases protect untreated acinar cells from mitochondrial damage. We found that caspases not only mediate apoptosis but also regulate other parameters of CCK-induced acinar cell injury that are characteristic of pancreatitis; in particular, caspases negatively regulate necrosis and trypsin activation in acinar cells. The results suggest that the observed signaling pathways regulate parenchymal cell injury and death in CCK-induced pancreatitis. Protection against necrosis and trypsin activation by caspases can explain why the severity of pancreatitis in experimental models correlates inversely with the extent of apoptosis.  相似文献   

13.
Acute pancreatitis is a disease of variable severity in which some patients experience mild, self-limited attacks, whereas others manifest a severe, highly morbid, and frequently lethal attack. The events that regulate the severity of acute pancreatitis are, for the most part, unknown. It is generally believed that the earliest events in acute pancreatitis occur within acinar cells and result in acinar cell injury. Other processes, such as recruitment of inflammatory cells and generation of inflammatory mediators, are believed to occur subsequent to acinar cell injury, and these "downstream" events are believed to influence the severity of the disease. Several recently reported studies, however, have suggested that the acinar cell response to injury may, itself, be an important determinant of disease severity. In these studies, mild acute pancreatitis was found to be associated with extensive apoptotic acinar cell death, whereas severe acute pancreatitis was found to involve extensive acinar cell necrosis but very little acinar cell apoptosis. These observations led to the hypothesis that apoptosis could be a favorable response to acinar cells and that interventions that favor induction of apoptotic, as opposed to necrotic, acinar cell death might reduce the severity of an attack of acute pancreatitis. Indeed, in an experimental setting, the induction of pancreatic acinar cell apoptosis protects mice against acute pancreatitis. Little is known about the mechanism of apoptosis in the pancreatic acinar cell, although some early attempts have been made in that direction. Also, clinical relevance of these experimental studies remains to be investigated.  相似文献   

14.
Although oxygen free radicals (OFR) are considered to be one of the pathophysiological mechanisms involved in acute pancreatitis (AP), the contribution of acinar cells to their production is not well established. The aim of the present study was to determine the effect of N-acetylcysteine (NAC) in the course of AP induced by pancreatic duct obstruction (PDO) in rats, directly analysing by flow cytometry the quantity of OFR generated in acinar cells. NAC (50 mg/kg) was administered 1 h before and 1 h after PDO. Measurements by flow cytometry of OFR generated in acinar cells were taken at different PDO times over 24 h, using dihydrorhodamine-123 as fluorescent dye. Histological studies of pancreas and measurements of neutrophil infiltration in the pancreas, pancreatic glutathione (GSH), malondialdehyde (MDA) levels, plasma amylase activity and hemoconcentration were carried out in order to assess the severity of AP at different stages. NAC effectively blunted GSH depletion at early AP stages and prevented OFR generation found in acinar cells as a consequence of AP induced by PDO. This attenuation of the redox state impairment reduced cellular oxidative damage, as reflected by less severe pancreatic lesions, normal pancreatic MDA levels, as well as diminished neutrophil infiltration in pancreas. Hyperamylasemia and hemoconcentration following AP induction were ameliorated by NAC administration at early stages, when oxidative stress seems to be critical in the development of pancreatitis. In conclusion, NAC reinforces the antioxidant defences in acinar cells, preventing OFR generation therefore attenuating oxidative damage and subsequently reducing the severity of PDO-induced AP at early stages of the disease.  相似文献   

15.
Piperine is a phenolic component of black pepper (Piper nigrum) and long pepper (Piper longum), fruits used in traditional Asian medicine. Our previous study showed that piperine inhibits lipopolysaccharide-induced inflammatory responses. In this study, we investigated whether piperine reduces the severity of cerulein-induced acute pancreatitis (AP). Administration of piperine reduced histologic damage and myeloperoxidase (MPO) activity in the pancreas and ameliorated many of the examined laboratory parameters, including the pancreatic weight (PW) to body weight (BW) ratio, as well as serum levels of amylase and lipase and trypsin activity. Furthermore, piperine pretreatment reduced the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 during cerulein-induced AP. In accordance with in vivo results, piperine reduced cell death, amylase and lipase activity, and cytokine production in isolated cerulein-treated pancreatic acinar cells. In addition, piperine inhibited the activation of mitogen-activated protein kinases (MAPKs). These findings suggest that the anti-inflammatory effect of piperine in cerulein-induced AP is mediated by inhibiting the activation of MAPKs. Thus, piperine may have a protective effect against AP.  相似文献   

16.
Pancreatitis is a common and potentially lethal necro-inflammatory disease with both acute and chronic manifestations. Current evidence suggests that the accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic disease, which is associated with an increased risk of pancreatic cancer. While parathyroid hormone-related protein (PTHrP) exerts multiple effects in normal physiology and disease states, its function in pancreatitis has not been previously addressed. Here we show that PTHrP levels are transiently elevated in a mouse model of cerulein-induced AP. Treatment with alcohol, a risk factor for both AP and chronic pancreatitis (CP), also increases PTHrP levels. These effects of cerulein and ethanol are evident in isolated primary acinar and stellate cells, as well as in the immortalized acinar and stellate cell lines AR42J and irPSCc3, respectively. Ethanol sensitizes acinar and stellate cells to the PTHrP-modulating effects of cerulein. Treatment of acinar cells with PTHrP (1-36) increases expression of the inflammatory mediators interleukin-6 (IL-6) and intracellular adhesion protein (ICAM-1), suggesting a potential autocrine loop. PTHrP also increases apoptosis in AR42J cells. Stellate cells mediate the fibrogenic response associated with pancreatitis; PTHrP (1-36) increases procollagen I and fibronectin mRNA levels in both primary and immortalized stellate cells. The effects of cerulein and ethanol on levels of IL-6 and procollagen I are suppressed by the PTH1R antagonist, PTHrP (7-34). Together these studies identify PTHrP as a potential mediator of the inflammatory and fibrogenic responses associated with alcoholic pancreatitis.  相似文献   

17.
18.
《Autophagy》2013,9(8):1060-1062
Auto-digestion of the pancreas by its own prematurely activated digestive proteases is thought to be an important event in the onset of acute pancreatitis. Although lysosomal hydrolases, such as cathepsin B, play a key role in intrapancreatic trypsinogen activation, it remains unclear where and how trypsinogen meets these lysosomal enzymes. Autophagy is an intracellular bulk degradation system in which cytoplasmic components are directed to the lysosome/vacuole by a membrane-mediated process. To analyze the role of autophagy in acute pancreatitis, we produced a conditional knockout mouse that lacks the autophagy-related (Atg) gene Atg5 in the pancreatic acinar cells. The severity of acute pancreatitis induced by cerulein is greatly reduced in these mice. In addition, Atg5-deficient acinar cells show a significantly decreased level of trypsinogen activation. These data suggest that autophagy exerts a detrimental effect in pancreatic acinar cells by activation of trypsinogen to trypsin. We propose a theory in which autophagy accelerates trypsinogen activation by lysosomal hydrolases under acidic conditions, thus triggering acute pancreatitis in its early stage.

Addendum to: Hashimoto D, Ohmuraya M, Hirota M, Yamamoto A, Suyama K, Ida S, Okumura Y, Takahashi E, Kido H, Araki K, Baba H, Mizushima N, Yamamura K. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol 2008; 181:1065-72.  相似文献   

19.
20.
Acute pancreatitis (AP) is an inflammatory disorder initiated by activation of pancreatic zymogens, leading to pancreatic injury and systemic inflammatory response. MicroRNAs (miRNAs) have emerged as important regulators of gene expression and key players in human physiological and pathological processes. Discoveries over the past decade have confirmed that altered expression of miRNAs is implicated in the pathogenesis of AP. Indeed, a number of miRNAs have been found to be dysregulated in various cell types involved in AP such as acinar cells, macrophages, and lymphocytes. These aberrant miRNAs can regulate acinar cell necrosis and apoptosis, local and systemic inflammatory response, thereby contributing to the initiation and progression of AP. Moreover, patients with AP possess unique miRNA signatures when compared with healthy individuals or those with other diseases. In view of their stability and easy detection, therefore, miRNAs have the potential to act as biomarkers for the diagnosis and assessment of patients with AP. In this review, we provide an overview of the novel cellular and molecular mechanisms underlying the roles of miRNAs during the disease processes of AP, as well as the potential diagnosis and therapeutic biomarkers of miRNAs in patients with AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号