首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation is a core part of therapy for malignant glioma and is often provided following debulking surgery. However, resistance to radiation occurs in most patients, and the underlying molecular mechanisms of radio-resistance are not fully understood. Here, we demonstrated that microRNA 21 (miR-21), a well-known onco-microRNA in malignant glioma, is one of the major players in radio-resistance. Radio-resistance in different malignant glioma cell lines measured by cytotoxic cell survival assay was closely associated with miR-21 expression level. Blocking miR-21 with anti-miR-21 resulted in radio-sensitization of U373 and U87 cells, whereas overexpression of miR-21 lead to a decrease in radio-sensitivity of LN18 and LN428 cells. Anti-miR-21 sustained γ-H2AX DNA foci formation, which is an indicator of double-strand DNA damage, up to 24 hours and suppressed phospho-Akt (ser473) expression after exposure to γ-irradiation. In a cell cycle analysis, a significant increase in the G2/M phase transition by anti-miR-21 was observed at 48 hours after irradiation. Interestingly, our results showed that anti-miR-21 increased factors associated with autophagosome formation and autophagy activity, which was measured by acid vesicular organelles, LC3 protein expression, and the percentage of GFP-LC3 positive cells. Furthermore, augmented autophagy by anti-miR-21 resulted in an increase in the apoptotic population after irradiation. Our results show that miR-21 is a pivotal molecule for circumventing radiation-induced cell death in malignant glioma cells through the regulation of autophagy and provide a novel phenomenon for the acquisition of radio-resistance.  相似文献   

2.
Advanced prostate cancers are known to acquire not only invasive capabilities but also significant resistance to chemotherapy-induced apoptosis. To understand how microRNAs (miRNAs) may contribute to prostate cancer resistance to apoptosis, we compared microRNA expression profiles of a benign prostate cancer cell line WPE1-NA22 and a highly malignant WPE1-NB26 cell line (derived from a common lineage). We found that miR-205 and miR-31 are significantly downregulated in WPE1-NB26 cells, as well as in other cell lines representing advanced-stage prostate cancers. Antiapoptotic genes BCL2L2 (encoding Bcl-w) and E2F6 are identified as the targets of miR-205 and miR-31, respectively. By downregulating Bcl-w and E2F6, miR-205 and miR-31 promote chemotherapeutic agents-induced apoptosis in prostate cancer cells. The promoter region of the miR-205 gene was cloned and was found to be hypermethylated in cell lines derived from advanced prostate cancers, contributing to the downregulation of the gene. Treatment with DNA methylation inhibitor 5-aza-2′-deoxycytidine induced miR-205 expression, downregulated Bcl-w, and sensitized prostate cancer cells to chemotherapy-induced apoptosis. Thus, downregulation of miR-205 and miR-31 has an important role in apoptosis resistance in advanced prostate cancer.  相似文献   

3.
RAD51 is a vital component of the homologous recombination DNA repair pathway and is overexpressed in drug-resistant cancers, including aggressive triple negative breast cancer (TNBC). A proposed strategy for improving therapeutic outcomes for patients is through small molecule inhibition of RAD51, thereby sensitizing tumor cells to DNA damaging irradiation and/or chemotherapy. Here we report structure-activity relationships for a library of quinazolinone derivatives. A novel RAD51 inhibitor (17) displays up to 15-fold enhanced inhibition of cell growth in a panel of TNBC cell lines compared to compound B02, and approximately 2-fold increased inhibition of irradiation-induced RAD51 foci formation. Additionally, compound 17 significantly inhibits TNBC cell sensitivity to DNA damage, implying a potentially targeted therapy for cancer treatment.  相似文献   

4.
Liu Q  Jiang H  Liu Z  Wang Y  Zhao M  Hao C  Feng S  Guo H  Xu B  Yang Q  Gong Y  Shao C 《PloS one》2011,6(8):e23427

Background

Esophageal squamous cell carcinomas (ESCC) have poor prognosis. While combined modality of chemotherapy and radiotherapy increases survival, most patients die within five years. Development of agents that confer cancer cell-specific chemo- and radiosensitivity may improve the therapy of ESCC. We here reported the discovery of berberine as a potent radiosensitizing agent on ESCC cells.

Principal Findings

Berberine at low concentrations (<15 µM) substantially radiosensitized ESCC cells. X-ray induced DNA double-strand breaks (DSBs) persist longer in ESCC cells pretreated with berberine. Berberine pretreatment led to a significant downregulation of RAD51, a key player in homologous recombination repair, in ESCC cells, but not in non-malignant human cells. Downregulation of RAD51 by RNA interference similarly radiosensitized the cancer cells, and, conversely, introduction of exogenous RAD51 was able to significantly counteract the radiosensitizing effect of berberine, thus establishing RAD51 as a key determinant in radiation sensitivity. We also observed that RAD51 was commonly overexpressed in human ESCC tissues, suggesting that it is necessary to downregulate RAD51 to achieve high radio- or chemotherapeutic efficacy of ESCC in clinic, because overexpression of RAD51 is known to confer radio- and chemoresistance.

Conclusions/Significance

Berberine can effectively downregulate RAD51 in conferring radiosensitivity on esophageal cancer cells. Its clinical application as an adjuvant in chemotherapy and radiotherapy of esophageal cancers should be explored.  相似文献   

5.
Many recent efforts have focused on targeting cell death pathways for discovering new cancer therapies. The relative resistance of liver cancer cells to ionizing radiation (IR) and chemotherapeutic agents due to autophagic response limits the available treatment options for this type of cancer. In this study, 3-methyladenine (3-MA), an autophagy inhibitor, was investigated for its potential to enhance radio-sensitivity under radio-resistant conditions both in vitro and in vivo. Hep3B and HepG2 cells were used to examine the radio-resistance of liver cancer cells. The results show that Hep3B cells respond to irradiation with increased apoptotic cell death and that HepG2 is radio-resistant due to the IR-induced autophagy, as verified by DNA fragmentation, electron microscopy, acidic vesicular organelle formation, and Western blot analysis. Application of IR with 3-MA to inhibit autophagy simultaneously suppressed the expression of LC3 and enhanced cell death. The tumor xenograft model in nude mice verified the synergistic cytotoxic effect of 3-MA and IR, which resulted in significant repression of tumor growth. The results demonstrate that IR-induced autophagy provides a self-protective mechanism against radiotherapy in HepG2 cells. In addition, 3-MA enhances the cytotoxicity of IR in cell models and suppresses tumor growth in animal models. Based on the results, application of 3-MA, or other autophagy inhibitors, could be used as an adjuvant for radiotherapy when radio-resistance develops as a result of autophagy response.  相似文献   

6.
Radiation therapy (RT) is one of the main treatment modalities for cervical cancer. Rosiglitazone (ROSI) has been reported to have antiproliferative effects against various types of cancer cells and also to induce antioxidant enzymes that can scavenge reactive oxygen species (ROS) and thereby modify radiosensitivity. Here, we explored the effect of ROSI on radiosensitivity and the underlying mechanisms in cervical cancer cells. Three cervical cancer cell lines (ME-180, HeLa, and SiHa) were used. The cells were pretreated with ROSI and then irradiated. Expression of proteins of interest was detected by western blot and immunofluorescence. Intracellular production of ROS was measured by H2DCFDA. Radiosensitivity was assessed by monitoring clonogenic survival. Expression of antioxidant enzymes (catalase, superoxide dismutases) was increased by ROSI in HeLa and SiHa cells, but not in ME-180 cells. With ROSI pre-treatment, cell survival after irradiation remained unchanged in HeLa and SiHa cells, but decreased in ME-180 cells. Radiation-induced expression of γ-H2AX was increased and that of RAD51 was decreased by ROSI pre-treatment in ME-180 cells, but not in HeLa cells. ROSI increases radiosensitivity by inhibiting RAD51-mediated repair of DNA damage in some cervical cancer cell lines; therefore, ROSI is a potential inhibitor of RAD51 that can be used to enhance the effect of RT in the treatment of some cervical cancers.  相似文献   

7.
MiR-34a, a direct target of p53, has shown to exert potent anti-proliferative effects. It has also been found that miR-34a can be induced by irradiation in vitro and in vivo. However, the relationship between miR-34a and radio-sensitivity, and its potential diagnostic significance in radiation biology, remain unclear. This study found that differing responses to ionizing radiation (IR) of young and adult mice were related to miR-34a. First, we found that miR-34a could be induced in many organs by radiation of both young and adult mice. However, the level of miR-34a induced by young mice was much higher when compared to adult mice. Next, we found that miR-34a played a critical role in radio-sensitivity variations of different tissues by enhancing cell apoptosis and decreasing cell viability. We also found that the induction of miR-34a by radiation was in a p53 dependent manner and that one possible downstream target of miR-34a that lead to different radio-sensitivity was the anti-apoptosis molecular Bcl-2. However, over-expression of miR-34a and knockdown of Bcl-2 could significantly enhance the radio-sensitivity of different cells while inhibition of miR-34a could protect cells from radiation injury. Finally, we concluded that miR-34a could be stable in serum after IR and serve as a novel indicator of radiation injury. Taken together, this data strongly suggests that miR-34a may be a novel indicator, mediator and target of radiation injury, radio-sensitivity and radioprotection.  相似文献   

8.
MicroRNA-24-3p (miR-24-3p) has been implicated as a key promoter of chemotherapy resistance in numerous cancers. Meanwhile, cancer-associated fibroblasts (CAFs) can secret exosomes to transfer miRNAs, which mediate tumour development. However, little is known regarding the molecular mechanism of CAF-derived exosomal miR-24-3p in colon cancer (CC). Hence, this study intended to characterize the functional relevance of CAF-derived exosomal miR-24-3p in CC cell resistance to methotrexate (MTX). We identified differentially expressed HEPH, CDX2 and miR-24-3p in CC through bioinformatics analyses, and validated their expression in CC tissues and cells. The relationship among HEPH, CDX2 and miR-24-3p was verified using ChIP and dual-luciferase reporter gene assays. Exosomes were isolated from miR-24-3p inhibitor–treated CAFs (CAFs-exo/miR-24-3p inhibitor), which were used in combination with gain-of-function and loss-of-function experiments and MTX treatment. CCK-8, flow cytometry and colony formation assays were conducted to determine cell viability, apoptosis and colony formation, respectively. Based on the findings, CC tissues and cells presented with high expression of miR-24-3p and low expression of HEPH and CDX2. CDX2 was a target gene of miR-24-3p and could up-regulate HEPH. Under MTX treatment, overexpressed CDX2 or HEPH and down-regulated miR-24-3p reduced cell viability and colony formation and elevated cell apoptosis. Furthermore, miR-24-3p was transferred into CC cells via CAF-derived exosomes. CAF-derived exosomal miR-24-3p inhibitor diminished cell viability and colony formation and increased cell apoptosis in vitro and inhibited tumour growth in vivo under MTX treatment. Altogether, CAF-derived exosomal miR-24-3p accelerated resistance of CC cells to MTX by down-regulating CDX2/HEPH axis.  相似文献   

9.
Topoisomerase IIβ-binding protein 1 (TOPBP1) participates in DNA replication and DNA damage response; however, its role in DNA repair and relevance for human cancer remain unclear. Here, through an unbiased small interfering RNA screen, we identified and validated TOPBP1 as a novel determinant whose loss sensitized human cells to olaparib, an inhibitor of poly(ADP-ribose) polymerase. We show that TOPBP1 acts in homologous recombination (HR) repair, impacts olaparib response, and exhibits aberrant patterns in subsets of human ovarian carcinomas. TOPBP1 depletion abrogated RAD51 loading to chromatin and formation of RAD51 foci, but without affecting the upstream HR steps of DNA end resection and RPA loading. Furthermore, TOPBP1 BRCT domains 7/8 are essential for RAD51 foci formation. Mechanistically, TOPBP1 physically binds PLK1 and promotes PLK1 kinase–mediated phosphorylation of RAD51 at serine 14, a modification required for RAD51 recruitment to chromatin. Overall, our results provide mechanistic insights into TOPBP1’s role in HR, with potential clinical implications for cancer treatment.  相似文献   

10.
High expression of Aurora kinase A (Aurora-A) has been found to confer cancer cell radio- and chemoresistance, however, the underlying mechanism is unclear. In this study, by using Aurora-A cDNA/shRNA or the specific inhibitor VX680, we show that Aurora-A upregulates cell proliferation, cell cycle progression, and anchorage-independent growth to enhance cell resistance to cisplatin and X-ray irradiation through dysregulation of DNA damage repair networks. Mechanistic studies showed that Aurora-A promoted the expression of ATM/Chk2, but suppressed the expression of BRCA1/2, ATR/Chk1, p53, pp53 (Ser15), H2AX, γH2AX (Ser319), and RAD51. Aurora-A inhibited the focus formation of γH2AX in response to ionizing irradiation. Treatment of cells overexpressing Aurora-A and ATM/Chk2 with the ATM specific inhibitor KU-55933 increased the cell sensitivity to cisplatin and irradiation through increasing the phosphorylation of p53 at Ser15 and inhibiting the expression of Chk2, γH2AX (Ser319), and RAD51. Further study revealed that BRCA1/2 counteracted the function of Aurora-A to suppress the expression of ATM/Chk2, but to activate the expression of ATR/Chk1, pp53, γH2AX, and RAD51, leading to the enhanced cell sensitivity to irradiation and cisplatin, which was also supported by the results from animal assays. Thus, our data provide strong evidences that Aurora-A and BRCA1/2 inversely control the sensitivity of cancer cells to radio- and chemotherapy through the ATM/Chk2-mediated DNA repair networks, indicating that the DNA repair molecules including ATM/Chk2 may be considered for the targeted therapy against cancers with overexpression of Aurora-A.  相似文献   

11.
Cervical cancer (CC) is a common gynecological cancer and a leading cause of cancer-related deaths in women globally. Therefore, this study explores the action of microRNA-205 (miR-205) in the invasion, migration, and angiogenesis of CC through binding to tumor suppressor lung cancer 1 (TSLC1). Initially, the microarray analysis was used to select the candidate gene and the regulatory microRNA. Then, the target relationship between miR-205 and TSLC1 as well as the expression of miR-205, TSLC1, and p-Akt/total Akt in CC cells were determined. Afterwards, CC cell invasion and migration were detected after the treatment of miR-205 mimics/inhibitors and short hairpin RNA against TSLC1. After coculture of cancer cells and vascular endothelial cells, cell proliferation, tube formation, and microvessel density (MVD) were detected to determine the roles of miR-205 in angiogenesis. Finally, tumor growth in nude mice was measured in vivo. TSLC1 was determined as the candidate gene, which was found to be targeted and negatively regulated by miR-205. Then, downregulated miR-205 or forced TSLC1 expression inhibited invasion, migration, and angiogenesis in CC, corresponding to suppressed cell proliferation, tube formation, and expression of IL-8, VEGF, and bFGF, as well as the inhibited activation of the Akt signaling pathway. Furthermore, downregulation of miR-205 was found to exert an inhibitory role in tumor formation and MVD by elevating TSLC1 in CC in vivo. This study demonstrated that downregulated miR-205 inhibited cell invasion, migration, and angiogenesis in CC by inactivating the Akt signaling pathway via TSLC1 upregulation.  相似文献   

12.
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer.  相似文献   

13.
目的:探讨CKS1表达对食管癌细胞辐射敏感性的影响,初步研究其分子机理.方法:用Western-blotting方法筛选CKS1低表达和高表达的食管癌细胞系;构建CKS1正义表达载体p-pcDNA 3.1/myc-His A-CKS1和RNA干扰载体CKS1 siRNA,分别转染CKS1低表达细胞和高表达细胞,用不同剂量γ-射线照射各组细胞,克隆形成实验检测细胞辐射敏感性的差异.结果:CKS1在四种食管癌细胞中的表达水平依次为EC9706> KYSE510>KYSE450> KYSE150.用p-pcDNA 3.1/myc--His A-CKS1表达载体转染KYSE150细胞后CKS12表达升高,不同剂量γ-射线照射后细胞的克隆形成能力显著高于母系对照组(P<0.01).RNA干扰载体转染KYSE510细胞后CKS1表达水平降低,不同剂量γ-射线照射后细胞的克隆形成能力显著低于母系对照组(P<0.01).敲降CKS1表达后DNA损伤修复相关蛋白RAD51表达下降,KU70表达没有变化.CKS1过表达后RAD51表达升高,KU70表达没有变化.结论:CKS1表达与食管癌细胞的辐射敏感性密切相关,可能通过影响DNA损伤修复发挥作用.  相似文献   

14.

Objectives

To determine the role of miR-190b in radio-sensitivity of gastric cancer (GC).

Results

In radio-resistant GC cells, down-regulation of miR-190b and up-regulation of Bcl-2 were observed. The protein expression of Bcl-2 was negatively regulated by miR-190b. Overexpression of miR-190b significantly decreased cell viability and enhanced radio-sensitivity of GC cells. Of note, these effects of miR-190b on GC cells radio-sensitivity were abolished by Bcl-2.

Conclusion

miR-190b confers radio-sensitivity of GC cells, possibly via negative regulation of Bcl-2.
  相似文献   

15.
Cervical cancer is the third most common cancer in women worldwide. However, the underlying mechanism of occurrence and development of cervical cancer is obscure. In this study, we observed that miR-30e was downregulated in clinical cervical cancer tissues and cervical cancer cells. Next, overexpression of miR-30e reduced the cervical cancer cell growth through MTT, colony formation, EdU, and Transwell assay in SiHa and Caski cells. Subsequently, UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 7 (GALNT7) was identified as a potential miR-30e target by bioinformatics analysis. Moreover, we showed that miR-30e was able to bind to the 3′UTR of GALNT7 by luciferase reporter assay. In addition, the mRNA and protein levels of GALNT7 in cervical cancer cells were downregulated by miR-30e. And we validated that downregulation of GALNT7 repressed the proliferation of SiHa and Caski cells by MTT, colony formation, and Transwell assay. We identified that the restoration of GALNT7 expression was able to counteract the effect of miR-30e on cell proliferation of cervical cancer cells. Furthermore, we found that the expression levels of GALNT7 were frequently upregulated and negatively correlative to those of miR-30e in cervical cancer tissues. In addition, we validated that restoration of GALNT7 rescued the miR-30e–suppressed growth of cervical cancer xenografts in vivo. In conclusion, the current results suggest that miR-30e may function as tumor suppressors in cervical cancer through downregulation of GALNT7. Both miR-30e and its novel target, GALNT7, may play an important role in the process of cervical cancer.  相似文献   

16.
Recent data strongly suggests the profound role of miRNAs in cancer progression. Here, we showed miR-126 expression was much lower in HCT116, SW620 and HT-29 colon cancer cells with highly metastatic potential and miR-126 downregulation was more frequent in colorectal cancers with metastasis. Restored miR-126 expression inhibited HT-29 cell growth, cell-cycle progression and invasion. Mechanically, microarray results combined with bioinformatic and experimental analysis demonstrated miR-126 exerted cancer suppressor role via inhibiting RhoA/ROCK signaling pathway. These results suggest miR-126 function as a potential tumor suppressor in colon cancer progression and miR-126/RhoA/ROCK may be a novel candidate for developing rational therapeutic strategies.  相似文献   

17.
We previously reported that cyclin D1 silencing interferes with RAD51 accumulation and increases the sensitivity of BRCA1 wild-type ovarian cancer cells to olaparib. However, the mechanisms associated with cyclin D1 overexpression in ovarian cancer are not fully understood. TargetScan predicted the potential binding sites for microRNA-20b (miR-20b) and the 3′-untranslated region of cyclin D1 mRNA; thus, we used luciferase reporter assay to verify those binding sites. The Kaplan-Meier method and log-rank test were used to examine the relationship between miR-20b and progression-free survival of ovarian cancer patients in The Cancer Genome Atlas (n = 367) dataset. In vitro experiments were performed to evaluate the effects of miR-20b on cyclin D1 expression, cell cycle and response to olaparib. A peritoneal cavity metastasis model of ovarian cancer was established to determine the effect of miR-20b on the sensitivity of olaparib. Immunohistochemistry was performed to evaluate molecular mechanisms. In this work, we demonstrated that miR-20b down-regulates cyclin D1, increases the sensitivity of ovarian cancer cells to olaparib, reduces the expression of RAD51, and induces cell cycle arrest in G0/G1 phase. Ovarian cancer patients with higher expression of miR-20b had significantly longer progression-free survival. These results indicate that miR-20b may be a potential clinical indicator for the sensitivity of ovarian cancer to olaparib and the survival of ovarian cancer patients. Our findings suggest that miR-20b may have therapeutic value in combination with olaparib treatment for ovarian cancer.  相似文献   

18.
Cervical cancer (CC) is one of the most prevalent cancers in women in the world. However, the pathogenesis is still very unclear, and the current screening methods are too expensive. Emerging evidence shows that miR-1266 has great influence on tumor cell migration and invasion. In order to clarify the role of miR-1266 in CC, we collected serum from CC, high-grade squamous intraepithelial lesion (HSIL), low-grade squamous intraepithelial lesion (LSIL) and normal control (NC), collected tissues from CC and control group (CG), and followed up 50 CC patients. We used HeLa and SiHa cells to clarify the roles of miR-1266 on cell proliferation, migration and invasion. The CC mouse model was conducted to prove the role of miR-1266 on tumorigenesis. qRT-PCR was used to measure the expressions of miR-1266 and DAB2IP mRNA. Western blot was used to determine the expression of DAB2IP protein. Cell counting kit-8 proliferation assay (CCK-8), Colony formation assay, Wound-healing assay and Transwell invasion assay were used to determine the cell survival, proliferative, migrative and invasive abilities. Our study found that miR-1266 had a rising trend in serum from NC to LSIL to HSIL to CC, and increased in CC tissues. High expression serum miR-1266 had lower overall survival rates than patients with miR-1266 low expression. MiR-1266 promoted cell viability, proliferation, migration and invasion by targeting DAB2IP. And miR-1266 could promote tumorigenesis in vivo. In conclusion, miR-1266 could be used as a new biomarker for diagnosis, prediction and treatment of CC in the future.  相似文献   

19.
The frequent alteration of miRNA expression in many cancers, together with our recent reports showing a robust accumulation of miR-483-3p at the final stage of skin wound healing, and targeting of CDC25A leading to an arrest of keratinocyte proliferation, led us to hypothesize that miR-483-3p could also be endowed with antitumoral properties. We tested that hypothesis by documenting the in vitro and in vivo impacts of miR-483-3p in squamous cell carcinoma (SCC) cells. miR-483-3p sensitized SCC cells to serum deprivation- and drug-induced apoptosis, thus exerting potent tumor suppressor activities. Its pro-apoptotic activity was mediated by a direct targeting of several anti-apoptotic genes, such as API5, BIRC5, and RAN. Interestingly, an in vivo delivery of miR-483-3p into subcutaneous SCC xenografts significantly hampered tumor growth. This effect was explained by an inhibition of cell proliferation and an increase of apoptosis. This argues for its further use as an adjuvant in the many instances of cancers characterized by a downregulation of miR-483-3p.  相似文献   

20.
Wang H  Tan G  Dong L  Cheng L  Li K  Wang Z  Luo H 《PloS one》2012,7(4):e34210

Background

Chemotherapy is an important component in the treatment paradigm for breast cancers. However, the resistance of cancer cells to chemotherapeutic agents frequently results in the subsequent recurrence and metastasis. Identification of molecular markers to predict treatment outcome is therefore warranted. The aim of the present study was to evaluate whether expression of circulating microRNAs (miRNAs) can predict clinical outcome in breast cancer patients treated with adjuvant chemotherapy.

Methodology/Principal Findings

Circulating miRNAs in blood serum prior to treatment were determined by quantitative Real-Time PCR in 56 breast cancer patients with invasive ductal carcinoma and pre-operative neoadjuvant chemotherapy. Proliferating cell nuclear antigen (PCNA) immunostaining and TUNEL were performed in surgical samples to determine the effects of chemotherapy on cancer cell proliferation and apoptosis, respectively. Among the miRNAs tested, only miR-125b was significantly associated with therapeutic response, exhibiting higher expression level in non-responsive patients (n = 26, 46%; p = 0.008). In addition, breast cancers with high miR-125b expression had higher percentage of proliferating cells and lower percentage of apoptotic cells in the corresponding surgical specimens obtained after neoadjuvant chemotherapy. Increased resistance to anticancer drug was observed in vitro in breast cancer cells with ectopic miR-125b expression; conversely, reducing miR-125b level sensitized breast cancer cells to chemotherapy. Moreover, we demonstrated that the E2F3 was a direct target of miR-125b in breast cancer cells.

Conclusions/Significance

These data suggest that circulating miR-125b expression is associated with chemotherapeutic resistance of breast cancer. This finding has important implications in the development of targeted therapeutics for overcoming chemotherapeutic resistance in novel anti-cancer strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号