首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Adjacent mucosa may reflect the conflicting of host factors in response to the establishment or invasion of cancers. Characterization of anti-tumor immunity in this region may add help in understanding the immune-related mechanisms of colorectal carcinoma (CRC). In this study, adjacent non-tumor mucosa from 36 patients with colorectal adenoma (CRA), 26 with CRC and normal mucosa from 15 health controls were included, immune cell populations of dendritic cell, lymphocyte and macrophage were characterized with immunohistochemistry (IHC) and tissue messenger RNA (mRNA) levels of Th1 cytokines interferon (IFN)-gamma and its upstream inducers interleukin (IL)-12 and IL-18 were quantified with real-time PCR; In addition, dendritic cell differentiation and function inhibitors cyclooxygenase-2 (COX-2) and IL-6 mRNA levels were also quantified. By IHC, a significant decreased dendritic cell density in the non-tumor mucosa adjacent to CRC was detected (P < 0.05) as compared to the normal controls or adjacent mucosa of CRA. The grading scores for lymphocyte number in the adjacent mucosa of CRA and CRC were gradually non-statistically increased, while the grading scores for macrophages number was not changed. By quantitative real-time PCR, distinct local cytokine gene expression profile was demonstrated. In which, the Th1 cytokines, particularly IL-12, were increased in adjacent mucosa of CRA, but all significantly decreased in adjacent mucosa of CRC. In addition, the mRNA levels of IL-6 and COX-2 were significantly higher in adjacent mucosa of CRC than that in adjacent mucosa of CRA (both P < 0.05). Therefore, dendritic cell functional changes could be one of the important mechanisms for altered anti-tumour immunity in the adjacent non-tumor mucosa throughout adenoma–carcinoma sequence. The increased COX-2 and IL-6 might contribute to dendritic cell funtional defect in adjacent mucosa of CRC.  相似文献   

2.

Background

Oncogenic mutational analysis provides predictive guidance for therapeutics such as anti-EGFR antibodies, but it is successful only for a subset of colorectal cancer (CRC) patients.

Method

A comprehensive molecular profiling of 120 CRC patients, including 116 primary, 15 liver metastasis, and 1 peritoneal seeding tissue samples was performed to identify the relationship between v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) WT and mutant CRC tumors and clinical outcomes. This included determination of the protein activation patterns of human epidermal receptor 1 (HER1), HER2, HER3, c-MET, insulin-like growth factor 1 receptor (IGF1R), phosphatidylinositide 3-kinase (PI3K), Src homology 2 domain containing (Shc), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) kinases using multiplexed collaborative enzyme enhanced reactive (CEER) immunoassay.

Results

KRAS WT and mutated CRCs were not different with respect to the expression of the various signaling molecules. Poor prognosis in terms of early relapse (<2 years) and shorter disease-free survival (DFS) correlated with enhanced activation of PI3K signaling relative to the HER kinase pathway signaling, but not with the KRAS mutational status. KRAS WT CRCs were identified as a mixed prognosis population depending on their level of PI3K signaling. KRAS WT CRCs with high HER1/c-MET index ratio demonstrated a better DFS post-surgery. c-MET and IGF1R activities relative to HER axis activity were considerably higher in early relapse CRCs, suggesting a role for these alternative receptor tyrosine kinases (RTKs) in driving high PI3K signaling.

Conclusions

The presented data subclassified CRCs based on their activated signaling pathways and identify a role for c-MET and IGF1R-driven PI3K signaling in CRCs, which is superior to KRAS mutational tests alone. The results from this study can be utilized to identify aggressive CRCs, explain failure of currently approved therapeutics in specific CRC subsets, and, most importantly, generate hypotheses for pathway-guided therapeutic strategies that can be tested clinically.  相似文献   

3.
The frequency and spectrum of mutations in RAS/BRAF genes were studied in rectal adenomas, carcinomas in situ, and adenocarcinomas. It is shown that the frequency of KRAS mutations decreases from adenoma to adenocarcinoma; most adenomas and carcinomas in situ are heterogeneous and consist of several subclones. Possible models of colorectal cancer pathogenesis are discussed.  相似文献   

4.
Aberrant methylation is one of the most frequent epigenetic alterations that can contribute to tumor formation. Cell-free DNA can originate from tumor tissue; therefore, the evaluation of methylation markers in cell-free DNA can be a promising method for cancer screening. Our aim was to develop a panel of biomarkers with altered methylation along the colorectal adenoma-carcinoma sequence in both colonic tissue and plasma. Methylation of selected CpG sites in healthy colonic (n = 15), adenoma (n = 15), and colorectal cancer (n = 15) tissues was analyzed by pyrosequencing. MethyLight PCR was applied to study the DNA methylation of SFRP1, SFRP2, SDC2, and PRIMA1 gene promoters in 121 plasma and 32 biopsy samples. The effect of altered promoter methylation on protein expression was examined by immunohistochemistry. Significantly higher (P < 0.05) DNA methylation levels were detected in the promoter regions of all 4 markers, both in CRC and adenoma tissues compared with healthy controls. Methylation of SFRP1, SFRP2, SDC2, and PRIMA1 promoter sequences was observed in 85.1%, 72.3%, 89.4%, and 80.9% of plasma samples from patients with CRC and 89.2%, 83.8%, 81.1% and 70.3% from adenoma patients, respectively. When applied as a panel, CRC patients could be distinguished from controls with 91.5% sensitivity and 97.3% specificity [area under the curve (AUC) = 0.978], while adenoma samples could be differentiated with 89.2% sensitivity and 86.5% specificity (AUC = 0.937). Immunohistochemical analysis indicated decreasing protein levels of all 4 markers along the colorectal adenoma-carcinoma sequence. Our findings suggest that this methylation biomarker panel allows non-invasive detection of colorectal adenoma and cancer from plasma samples.  相似文献   

5.
6.
Glucose-related proteins (GRPs) are ubiquitously expressed in the endoplasmic reticulum and assist in protein folding and assembly, consequently considered to be molecular chaperones. GRP78 and GRP94 expression was induced by glucose starvation and up-regulated in samples taken from several different malignant tissues. To clarify the roles of both molecules in tumorigenesis and progression of colorectal carcinomas, immunohistochemistry (IHC) was performed on tissue microarrays containing colorectal carcinomas, adenomas and the non-neoplastic mucosa (NNM) using antibodies against GRP78 and GRP94. Their expression was correlated with the clinicopathological parameters of carcinomas. Both proteins were also studied in colorectal carcinoma cell lines (DLD-1, HCT-15, SW480 and WiDr) by IHC and Western blot. There was a gradually increased GRP78 expression from colorectal NNMs, carcinomas, to low-grade and high-grade adenomas (P<0.05), while up-regulated GRP94 expression from NNM, low-grade adenoma, high-grade adenoma, to carcinoma (P<0.05). The expression was similar in all the carcinoma cell lines. GRP78 expression was negatively correlated with lymphatic invasion or low GRP94 expression of the carcinomas (P<0.05), while there was no correlation of GRP94 expression with other parameters of carcinomas (P>0.05). Multivariate analysis showed that venous invasion, lymph node metastasis and UICC staging (P<0.05), but not age, sex, tumor size, differentiation, depth of invasion, lymphatic invasion, GRP78 and GRP94 expression (P>0.05), were independent prognostic factors for carcinomas. It is suggested that up-regulated expression of GRP78 and GRP94 could possibly be involved in the pathogenesis of colorectal carcinomas.  相似文献   

7.
Sporadic canine colorectal cancers (CRCs) should make excellent models for studying the corresponding human cancers. To molecularly characterize canine CRC, we investigated exonic sequence mutations of adenomatous polyposis coli (APC), the best known tumor suppressor gene of human CRC, in 23 sporadic canine colorectal tumors, including 8 adenomas and 15 adenocarcinomas, via exon-resequencing analysis. As a comparison, we also performed the same sequencing analysis on 10 other genes, either located at human 5q22 (the same locus as APC) or 18q21 (also frequently altered in human CRC), or known to play a role in human carcinogenesis. We noted that APC was the most significantly mutated gene in both canine adenomas and adenocarcinomas among the 11 genes examined. Significantly, we detected large deletions of ≥10 bases, many clustered near the mutation cluster region, as well as single or two base deletions in ∼70% canine tumors of both subtypes. These observations indicate that like in the human, APC is also frequently altered in sporadic colorectal tumors in the dog and its alteration is an early event in canine colorectal tumorigenesis. Our study provides further evidence demonstrating the molecular similarity in pathogenesis between sporadic human and canine CRCs. This work, along with our previous copy number abnormality study, supports that sporadic canine CRCs are valid models of human CRCs at the molecular level.  相似文献   

8.

Background

Testes-specific protease 50 (TSP50) is normally expressed in testes and abnormally expressed in breast cancer, but whether TSP50 is expressed in colorectal carcinoma (CRC) and its clinical significance is unclear. We aimed to detect TSP50 expression in CRC, correlate it with clinicopathological factors, and assess its potential diagnostic and prognostic value.

Methodology/Principal Findings

TSP50 mRNAs and proteins were detected in 7 CRC cell lines and 8 CRC specimens via RT-PCR and Western blot analysis. Immunohistochemical analysis of TSP50, p53 and carcinoembryonic antigen (CEA) with tissue microarrays composed of 95 CRCs, 20 colorectal adenomas and 20 normal colorectal tissues were carried out and correlated with clinicopathological characteristics and disease-specific survival for CRC patients. There was no significant correlation between the expression levels of TSP50 and p53 (P = 0.751) or CEA (P = 0.663). Abundant expression of TSP50 protein was found in CRCs (68.4%) while it was poorly expressed in colorectal adenomas and normal tissues (P<0.0001). Thus, CRCs can be distinguished from them with high specificity (92.5%) and positive predictive value (PPV, 95.6%). The survival of CRC patients with high TSP50 expression was significantly shorter than that of the patients with low TSP50 expression (P = 0.010), specifically in patients who had early-stage tumors (stage I and II; P = 0.004). Multivariate Cox regression analysis indicated that high TSP50 expression was a statistically significant independent risk factor (hazard ratio  = 2.205, 95% CI = 1.214–4.004, P = 0.009).

Conclusion

Our data demonstrate that TSP50 is a potential effective indicator of poor survival for CRC patients, especially for those with early-stage tumors.  相似文献   

9.
Exposure to heterocyclic aromatic amines (HAAs), carcinogens produced when meat is cooked at high temperatures, is an emerging risk factor for colorectal cancer (CRC). In a cross-sectional study of 342 patients undergoing a screening colonoscopy, the role of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx), the three most abundant HAAs found in cooked meats, and total mutagenic activity in cooked meats were examined in relation to colorectal adenoma risk. Given that genetic differences in the ability to biotransform HAAs and repair DNA are postulated to modify the HAA–CRC relationship, gene–diet interactions were also examined. Among the total study population, no relationships were observed between dietary HAAs or meat mutagenicity, and colorectal adenoma risk; however, in males, positive associations between dietary HAAs/meat mutagenicity exposures and adenoma risk were suggestive of a relationship. In a separate analysis, polymorphisms in CYP1B1 were found to be associated with colorectal adenoma risk. Additionally, gene–diet interactions were observed for dietary PhIP and polymorphisms in CYP1B1 and XPD, dietary DiMeIQx and XPD polymorphisms, and meat mutagenicity exposure and CYP1B1 polymorphisms. Overall, increased colorectal adenoma risk was observed with higher HAA/meat mutagenicity exposures among those with polymorphisms which confer greater activity to biotransform HAAs and/or lower ability to repair DNA. This research supports the link between dietary HAAs and genetic susceptibility in colorectal adenoma etiology. The vast majority of CRCs arise from colorectal adenomas; thus, the results of this study suggest that changes in meat preparation practices limiting the production of HAAs may be beneficial for CRC prevention.  相似文献   

10.
Osteopontin (OPN) has been shown to promote colorectal cancer (CRC) progression; however, the mechanism of OPN‐induced CRC progression is largely unknown. In this study, we found that OPN overexpression led to enhanced anchorage‐independent growth, cell migration and invasion in KRAS gene mutant cells but to a lesser extent in KRAS wild‐type cells. OPN overexpression also induced PI3K signalling, expression of Snail and Matrix metallopeptidase 9 (MMP9), and suppressed the expression of E‐cadherin in KRAS mutant cells. In human CRC specimens, a high‐level expression of OPN significantly predicted poorer survival in CRC patients and OPN expression was positively correlated with MMP9 expression, and negatively correlated with E‐cadherin expression. Furthermore, we have found that 15 genes were co‐upregulated in OPN highly expression CRC and a list of candidate drugs that may have potential to reverse the secreted phosphoprotein 1 (SPP1) gene signature by connectivity mapping. In summary, OPN is a potential prognostic indicator and therapeutic target for colon cancer.  相似文献   

11.
Colorectal cancer (CRC) is associated with lifestyle factors that affect insulin/IGF signaling, of which the insulin receptor substrate 1 (IRS1) is a key transducer. We investigated expression, localization and pathologic correlations of IRS1 in cancer-uninvolved colonic epithelium, primary CRCs with paired liver metastases and in vitro polarizing Caco2 and HT29 cells. IRS1 mRNA and protein resulted higher, relative to paired mucosa, in adenomas of familial adenomatous polyposis patients and in CRCs that overexpressed c-MYC, ß-catenin, InsRß, and IGF1R. Analysis of IRS1 immunostaining in 24 cases of primary CRC with paired colonic epithelium and hepatic metastasis showed that staining intensity was significantly higher in metastases relative to both primary CRC (P<0.01) and colonic epithelium (P<0.01). Primary and metastatic CRCs, compared to colonic epithelium, contained significantly higher numbers of IRS1-positive cells (P = 0.013 and P = 0.014, respectively). Pathologic correlations in 163 primary CRCs revealed that diffuse IRS1 staining was associated with tumors combining differentiated phenotype and aggressive markers (high Ki67, p53, and ß-catenin). In Caco 2 IRS1 and InsR were maximally expressed after polarization, while IGF1R was highest in pre-polarized cells. No nuclear IRS1 was detected, while, with polarization, phosphorylated IRS1 (pIRS1) shifted from the lateral to the apical plasma membrane and was expressed in surface cells only. In HT29, that carry mutations constitutively activating survival signaling, IRS1 and IGF1R decreased with polarization, while pIRS1 localized in nuclear spots throughout the course. Overall, these data provide evidence that IRS1 is modulated according to CRC differentiation, and support a role of IRS1 in CRC progression and liver metastatization.  相似文献   

12.
The interleukin-8 (IL-8) network is involved in the colorectal cancer (CRC) progression. However, its role during the adenoma–carcinoma transition to date has not been fully investigated. To evaluate the dynamic changes of IL-8 network along the colorectal adenoma–carcinoma sequence, we examined the tissue IL-8 mRNA level in colorectal biopsies from 53 colorectal adenomas, 44 CRCs and 18 controls by quantitative real-time PCR (Q-PCR), and the expressions of IL-8 and its receptors (IL-8RA and IL-8RB) in the tumor microenvironment by immunohistochemistry (IHC) and double IHCs. The results showed that the tissue IL-8 mRNA level began to increase in the precancerous lesions (adenomas) as compared with the controls and became even higher in the CRCs. Significantly, the increase of IL-8 mRNA levels was associated with the increase of dysplastic grades in the adenomas, and also paralleled to the increase of Duke’s stages in the CRCs. IHC results revealed that IL-8 and its receptors, IL-8RA and IL-8RB, were observed both in the stroma and in the adenomatous/cancerous cells. By double IHCs, the IL-8 expression was characterized in macrophages, lymphocytes and myofibroblasts in the tumor stroma. Further double IHC identified the co-expression of IL-8 receptors (IL-8RA and IL-8RB) with CD34 positive tumor-associated microvessels in both the adenomas and CRCs. We, therefore, conclude that activated IL-8 network in the tumor microenvironment may function as a significant regulatory factor for the adenoma progression and the adenoma–carcinoma transition.  相似文献   

13.
14.

Background

Dipeptidyl-peptidase IV (EC 3.4.14.5) (DPPIV) is a serine peptidase involved in cell differentiation, adhesion, immune modulation and apoptosis, functions that control neoplastic transformation. Previous studies have demonstrated altered expression and activity of tissue and circulating DPPIV in several cancers and proposed its potential usefulness for early diagnosis in colorectal cancer (CRC).

Methods and principal findings

The activity and mRNA and protein expression of DPPIV was prospectively analyzed in adenocarcinomas, adenomas, uninvolved colorectal mucosa and plasma from 116 CRC patients by fluorimetric, quantitative RT-PCR and immunohistochemical methods. Results were correlated with the most important classic pathological data related to aggressiveness and with 5-year survival rates. Results showed that: 1) mRNA levels and activity of DPPIV increased in colorectal neoplasms (Kruskal-Wallis test, p<0.01); 2) Both adenomas and CRCs displayed positive cytoplasmic immunostaining with luminal membrane reinforcement; 3) Plasmatic DPPIV activity was lower in CRC patients than in healthy subjects (Mann-U test, p<0.01); 4) Plasmatic DPPIV activity was associated with worse overall and disease-free survivals (log-rank p<0.01, Cox analysis p<0.01).

Conclusion/significance

1) Up-regulation of DPPIV in colorectal tumors suggests a role for this enzyme in the neoplastic transformation of colorectal tissues. This finding opens the possibility for new therapeutic targets in these patients. 2) Plasmatic DPPIV is an independent prognostic factor in survival of CRC patients. The determination of DPPIV activity levels in the plasma may be a safe, minimally invasive and inexpensive way to define the aggressiveness of CRC in daily practice.  相似文献   

15.
Erythropoietin-producing hepatocyte (Eph) receptor family constitutes the largest family of tyrosine kinase receptors in the human genome. Loss of EphB6, a kinase-deficient receptor, correlated with a negative outcome in several carcinomas. This study aimed to investigate the expression of EphB6 protein and mRNA levels in colorectal cancers (CRCs) and possible correlations with clinicopathological variables and prognosis. To assess protein expression level, 124 CRCs and 57 colorectal adenomas samples were examined by immunostaining, the mRNA level of 43 paired CRC and the adjacent normal tissues were detected by using SYBR Green real-time PCR method. Decreased expression of EphB6 protein was found in CRC as compared with adenoma and normal tissues (χ2 = 10.146, P = 0.001 and χ2 = 45.333, P < 0.001, respectively). Low EphB6 mRNA expression was detected in 83.8 % of cancers with negative or low EphB6 protein expression. The loss of EphB6 protein in CRC was positively associated with poorly differentiation (P < 0.001), lymph node metastasis (P = 0.006), Dukes stage (P = 0.002) and depth of invasion (P = 0.016). The patients with lymph node metastasis had a worse prognosis independently of gender, age, tumor site, stage and differentiation (RR = 0.404, CI 0.267–0.213, P < 0.001). Low levels of EphB6 protein expression are associated with a shorter mean duration of survival in colorectal cancer. Our results demonstrated that EphB6 may represent a novel, useful tissue biomarker for the prediction of survival rate in CRC.  相似文献   

16.
17.
Background: Altered nuclear and genomic structure and function are hallmarks of cancer cells. Research into nuclear proteins in human tissues could uncover novel molecular processes in cancer. Here, we examine biochemical tissue fractions containing chromatin-binding (CB) proteins in the context of colorectal cancer (CRC) progression. Methods: CB protein-containing fractions were biochemically extracted from human colorectal tissues, including carcinomas with chromosomal instability (CIN), carcinomas with microsatellite instability (MIN), and adenomas. The CB proteins were subjected to label-free LC–MS/MS and the data were analyzed by bioinformatics. Results: Over 1700 proteins were identified in the CB fraction from colonic tissues, including 938 proteins associated with nuclear annotation. Of the latter, 169 proteins were differential between adenomas and carcinomas. In this adenoma-versus-carcinoma comparison, apart from specific changes in components of the splicing and protein translational machineries, we also identified significant changes in several proteins associated with chromatin-directed functions. Furthermore, several key cell cycle proteins as well as those involved in cellular stress were increased, whereas specific components of chromosome segregation and DNA recombination/repair systems were decreased. Conclusions: Our study identifies proteomic changes at the subnuclear level that are associated with CRC and may be further investigated. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

18.
Background: There is accumulating evidence of aberrant expression of miR-143 and miR-145 and their target gene KRAS in colorectal cancer (CRC). We hypothesize that single nucleotide polymorphisms (SNPs) within or near mRNA–microRNA (miRNA) binding sites may affect miRNA/target gene interaction, resulting in differential mRNA/protein expression and promoting the development and progression of CRC. Methods: We conducted a case–control study of 507 patients with CRC recruited from a tertiary hospital and 497 population-based controls to assess the association of genetic polymorphisms in miR-143/145 and the KRAS 3′ untranslated region (3′UTR) with susceptibility to CRC and patients’ survival. In addition, genetic variations of genomic regions located from 500 bp upstream to 500 bp downstream of the miR-143/miR-145 gene and the 3′UTR of KRAS were selected for analysis using the Haploview and HaploReg software. Results: Using publicly available expression profiling data, we found that miR-143/145 and KRAS expression were all reduced in rectal cancer tissue compared with adjacent non-neoplastic large intestinal mucosa. The rs74693964 C/T variant located 65 bp downstream of miR-145 genomic regions was observed to be associated with susceptibility to CRC (adjusted odds ratio (OR): 2.414, 95% CI: 1.385–4.206). Cumulative effects of miR-143 and miR-145 on CRC risk were observed (Ptrend=0.03). Patients having CRC carrying variant genotype TT of KRAS rs712 had poorer survival (log-rank P=0.044, adjusted hazard ratio (HR): 4.328, 95% CI: 1.236–15.147). Conclusions: Our results indicate that miRNA-related polymorphisms in miR-143/145 and KRAS are likely to be deleterious and represent potential biomarkers for susceptibility to CRC and patients’ survival.  相似文献   

19.
Deregulation of DNA repair enzymes occurs in cancers and may create a susceptibility to chemotherapy. Expression levels of DNA repair enzymes have been shown to predict the responsiveness of cancers to certain chemotherapeutic agents. The RECQ helicases repair damaged DNA including damage caused by topoisomerase I inhibitors, such as irinotecan. Altered expression levels of these enzymes in colorectal cancer (CRC) may influence the response of the cancers to irinotecan. Thus, we assessed RECQ helicase (WRN, BLM, RECQL, RECQL4, and RECQL5) expression in primary CRCs, matched normal colon, and CRC cell lines. We found that BLM and RECQL4 mRNA levels are significantly increased in CRC (P = .0011 and P < .0001, respectively), whereas RECQL and RECQL5 are significantly decreased (P = .0103 and P = .0029, respectively). RECQ helicase expression patterns varied between specific molecular subtypes of CRCs. The mRNA and protein expression of the majority of the RECQ helicases was closely correlated, suggesting that altered mRNA expression is the predominant mechanism for deregulated RECQ helicase expression. Immunohistochemistry localized the RECQ helicases to the nucleus. RECQ helicase expression is altered in CRC, suggesting that RECQ helicase expression has potential to identify CRCs that are susceptible to specific chemotherapeutic agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号